This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1389

2015 Saudi Arabia IMO TST, 1

Tags: geometry , incenter
Let $ABC$ be an acute-angled triangle inscribed in the circle $(O)$, $H$ the foot of the altitude of $ABC$ at $A$ and $P$ a point inside $ABC$ lying on the bisector of $\angle BAC$. The circle of diameter $AP$ cuts $(O)$ again at $G$. Let $L$ be the projection of $P$ on $AH$. Prove that if $GL$ bisects $HP$ then $P$ is the incenter of the triangle $ABC$. Lê Phúc Lữ

2006 China Team Selection Test, 1

$ABCD$ is a trapezoid with $AB || CD$. There are two circles $\omega_1$ and $\omega_2$ is the trapezoid such that $\omega_1$ is tangent to $DA$, $AB$, $BC$ and $\omega_2$ is tangent to $BC$, $CD$, $DA$. Let $l_1$ be a line passing through $A$ and tangent to $\omega_2$(other than $AD$), Let $l_2$ be a line passing through $C$ and tangent to $\omega_1$ (other than $CB$). Prove that $l_1 || l_2$.

2014 India Regional Mathematical Olympiad, 1

let $ABCD$ be a isosceles trapezium having an incircle with $AB$ parallel to $CD$. let $CE$ be the perpendicular from $C$ on $AB$ prove that $ CE^2 = AB. CD $

2010 Germany Team Selection Test, 3

Let $ABCD$ be a circumscribed quadrilateral. Let $g$ be a line through $A$ which meets the segment $BC$ in $M$ and the line $CD$ in $N$. Denote by $I_1$, $I_2$ and $I_3$ the incenters of $\triangle ABM$, $\triangle MNC$ and $\triangle NDA$, respectively. Prove that the orthocenter of $\triangle I_1I_2I_3$ lies on $g$. [i]Proposed by Nikolay Beluhov, Bulgaria[/i]

2018 Cono Sur Olympiad, 5

Let $ABC$ be an acute-angled triangle with $\angle BAC = 60^{\circ}$ and with incenter $I$ and circumcenter $O$. Let $H$ be the point diametrically opposite(antipode) to $O$ in the circumcircle of $\triangle BOC$. Prove that $IH=BI+IC$.

2012 Sharygin Geometry Olympiad, 3

A circle with center $I$ touches sides $AB,BC,CA$ of triangle $ABC$ in points $C_{1},A_{1},B_{1}$. Lines $AI, CI, B_{1}I$ meet $A_{1}C_{1}$ in points $X, Y, Z$ respectively. Prove that $\angle Y B_{1}Z = \angle XB_{1}Z$.

1998 Taiwan National Olympiad, 4

Let $I$ be the incenter of triangle $ABC$. Lines $AI$, $BI$, $CI$ meet the sides of $\triangle ABC$ at $D$, $E$, $F$ respectively. Let $X$, $Y$, $Z$ be arbitrary points on segments $EF$, $FD$, $DE$, respectively. Prove that $d(X, AB) + d(Y, BC) + d(Z, CA) \leq XY + YZ + ZX$, where $d(X, \ell)$ denotes the distance from a point $X$ to a line $\ell$.

2003 France Team Selection Test, 3

$M$ is an arbitrary point inside $\triangle ABC$. $AM$ intersects the circumcircle of the triangle again at $A_1$. Find the points $M$ that minimise $\frac{MB\cdot MC}{MA_1}$.

2004 National High School Mathematics League, 14

Three points $A\left(0,\frac{4}{3}\right),B(-1,0),C(1,0)$ are given. The distance from $P$ to line $BC$ is the geometric mean of that from $P$ to lines $AB$ and $AC$. [b](a)[/b] Find the path equation of point $P$. [b](b)[/b] If line $L$ passes $D$ ($D$ is the incenter of $\triangle ABC$ ), and it has three common points with the path of $P$, find the range value of slope $k$ of line $L$.

2003 France Team Selection Test, 3

$M$ is an arbitrary point inside $\triangle ABC$. $AM$ intersects the circumcircle of the triangle again at $A_1$. Find the points $M$ that minimise $\frac{MB\cdot MC}{MA_1}$.

2008 Iran Team Selection Test, 10

In the triangle $ ABC$, $ \angle B$ is greater than $ \angle C$. $ T$ is the midpoint of the arc $ BAC$ from the circumcircle of $ ABC$ and $ I$ is the incenter of $ ABC$. $ E$ is a point such that $ \angle AEI\equal{}90^\circ$ and $ AE\parallel BC$. $ TE$ intersects the circumcircle of $ ABC$ for the second time in $ P$. If $ \angle B\equal{}\angle IPB$, find the angle $ \angle A$.

2022 Austrian MO Regional Competition, 3

Let $ABC$ denote a triangle with $AC\ne BC$. Let $I$ and $U$ denote the incenter and circumcenter of the triangle $ABC$, respectively. The incircle touches $BC$ and $AC$ in the points $D$ and E, respectively. The circumcircles of the triangles $ABC$ and $CDE$ intersect in the two points $C$ and $P$. Prove that the common point $S$ of the lines $CU$ and $P I$ lies on the circumcircle of the triangle $ABC$. [i](Karl Czakler)[/i]

2010 ELMO Shortlist, 4

Let $ABC$ be a triangle with circumcircle $\omega$, incenter $I$, and $A$-excenter $I_A$. Let the incircle and the $A$-excircle hit $BC$ at $D$ and $E$, respectively, and let $M$ be the midpoint of arc $BC$ without $A$. Consider the circle tangent to $BC$ at $D$ and arc $BAC$ at $T$. If $TI$ intersects $\omega$ again at $S$, prove that $SI_A$ and $ME$ meet on $\omega$. [i]Amol Aggarwal.[/i]

2025 Romania Team Selection Tests, P2

Tags: incenter , geometry
Let $ABC$ be a scalene acute triangle with incentre $I{}$ and circumcentre $O{}$. Let $AI$ cross $BC$ at $D$. On circle $ABC$, let $X$ and $Y$ be the mid-arc points of $ABC$ and $BCA$, respectively. Let $DX{}$ cross $CI{}$ at $E$ and let $DY{}$ cross $BI{}$ at $F{}$. Prove that the lines $FX, EY$ and $IO$ are concurrent on the external bisector of $\angle BAC$. [i]David-Andrei Anghel[/i]

1994 Bulgaria National Olympiad, 4

Let $ABC$ be a triangle with incenter $I$, and let the tangency points of its incircle with its sides $AB$, $BC$, $CA$ be $C'$, $A'$ and $B'$ respectively. Prove that the circumcenters of $AIA'$, $BIB'$, and $CIC'$ are collinear.

2006 China Team Selection Test, 1

$ABCD$ is a trapezoid with $AB || CD$. There are two circles $\omega_1$ and $\omega_2$ is the trapezoid such that $\omega_1$ is tangent to $DA$, $AB$, $BC$ and $\omega_2$ is tangent to $BC$, $CD$, $DA$. Let $l_1$ be a line passing through $A$ and tangent to $\omega_2$(other than $AD$), Let $l_2$ be a line passing through $C$ and tangent to $\omega_1$ (other than $CB$). Prove that $l_1 || l_2$.

2021 Yasinsky Geometry Olympiad, 6

In an acute-angled triangle $ABC$, point $I$ is the center of the inscribed circle, point $T$ is the midpoint of the arc $ABC$ of the circumcircle of triangle $ABC$. It turned out that $\angle AIT = 90^o$ . Prove that $AB + AC = 3BC$. (Matthew of Kursk)

2021 Yasinsky Geometry Olympiad, 5

Circle $\omega$ is inscribed in the $\vartriangle ABC$, with center $I$. Using only a ruler, divide segment $AI$ in half. (Grigory Filippovsky)

2014 Saudi Arabia Pre-TST, 3.3

Let $ABC$ be a triangle and $I$ its incenter. The line $AI$ intersects the side $BC$ at $D$ and the perpendicular bisector of $BC$ at $E$. Let $J$ be the incenter of triangle $CDE$. Prove that triangle $CIJ$ is isosceles.

2010 Iran Team Selection Test, 6

Let $M$ be an arbitrary point on side $BC$ of triangle $ABC$. $W$ is a circle which is tangent to $AB$ and $BM$ at $T$ and $K$ and is tangent to circumcircle of $AMC$ at $P$. Prove that if $TK||AM$, circumcircles of $APT$ and $KPC$ are tangent together.

2016 Vietnam National Olympiad, 2

Given a triangle $ABC$ inscribed by circumcircle $(O)$. The angles at $B,C$ are acute angle. Let $M$ on the arc $BC$ that doesn't contain $A$ such that $AM$ is not perpendicular to $BC$. $AM$ meets the perpendicular bisector of $BC$ at $T$. The circumcircle $(AOT)$ meets $(O)$ at $N$ ($N\ne A$). a) Prove that $\angle{BAM}=\angle{CAN}$. b) Let $I$ be the incenter and $G$ be the foor of the angle bisector of $\angle{BAC}$. $AI,MI,NI$ intersect $(O)$ at $D,E,F$ respectively. Let ${P}=DF\cap AM, {Q}=DE\cap AN$. The circle passes through $P$ and touches $AD$ at $I$ meets $DF$ at $H$ ($H\ne D$).The circle passes through $Q$ and touches $AD$ at $I$ meets $DE$ at $K$ ($K\ne D$). Prove that the circumcircle $(GHK)$ touches $BC$.

2014 Saudi Arabia BMO TST, 4

Let $ABC$ be a triangle with $\angle B \le \angle C$, $I$ its incenter and $D$ the intersection point of line $AI$ with side $BC$. Let $M$ and $N$ be points on sides $BA$ and $CA$, respectively, such that $BM = BD$ and $CN = CD$. The circumcircle of triangle $CMN$ intersects again line $BC$ at $P$. Prove that quadrilateral $DIMP$ is cyclic.

1988 IMO Longlists, 23

In a right-angled triangle $ ABC$ let $ AD$ be the altitude drawn to the hypotenuse and let the straight line joining the incentres of the triangles $ ABD, ACD$ intersect the sides $ AB, AC$ at the points $ K,L$ respectively. If $ E$ and $ E_1$ dnote the areas of triangles $ ABC$ and $ AKL$ respectively, show that \[ \frac {E}{E_1} \geq 2. \]

2011 Moldova Team Selection Test, 3

Tags: incenter , geometry
Let $ABC$ be a triangle with $\angle BAC=60$. Let $B_1$ and $C_1$ be the feet of the bisectors from $B$ and $C$. Let $A_1$ be the symmetrical of $A$ according to line $B_1C_1$. Prove that $A_1, B, C$ are colinear.

2004 Turkey Junior National Olympiad, 1

Tags: geometry , incenter
Let $[AD]$ and $[CE]$ be internal angle bisectors of $\triangle ABC$ such that $D$ is on $[BC]$ and $E$ is on $[AB]$. Let $K$ and $M$ be the feet of perpendiculars from $B$ to the lines $AD$ and $CE$, respectively. If $|BK|=|BM|$, show that $\triangle ABC$ is isosceles.