This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

1998 Balkan MO, 2

Let $n\geq 2$ be an integer, and let $0 < a_1 < a_2 < \cdots < a_{2n+1}$ be real numbers. Prove the inequality \[ \sqrt[n]{a_1} - \sqrt[n]{a_2} + \sqrt[n]{a_3} - \cdots + \sqrt[n]{a_{2n+1}} < \sqrt[n]{a_1 - a_2 + a_3 - \cdots + a_{2n+1}}. \] [i]Bogdan Enescu, Romania[/i]

MathLinks Contest 3rd, 2

Let n be a positive integer and let $a_1, a_2, ..., a_n, b_1, b_2, ... , b_n, c_2, c_3, ... , c_{2n}$ be $4n - 1$ positive real numbers such that $c^2_{i+j} \ge a_ib_j $, for all $1 \le i, j \le n$. Also let $m = \max_{2 \le i\le 2n} c_i$. Prove that $$\left(\frac{m + c_2 + c_3 +... + c_{2n}}{2n} \right)^2 \ge \left(\frac{a_1+a_2 + ... +a_n}{n}\right)\left(\frac{ b_1 + b_2 + ...+ b_n}{n}\right)$$

2007 China National Olympiad, 1

Given complex numbers $a, b, c$, let $|a+b|=m, |a-b|=n$. If $mn \neq 0$, Show that \[\max \{|ac+b|,|a+bc|\} \geq \frac{mn}{\sqrt{m^2+n^2}}\]

JOM 2015 Shortlist, A1

Let $ a, b, c $ be the side lengths of a triangle. Prove that $$ \displaystyle\sum_{cyc} \frac{(a^2 + b^2)(a + c)}{b} \ge 2(a^2 + b^2 + c^2) $$

1998 Brazil Team Selection Test, Problem 5

Consider $k$ positive integers $a_1,a_2,\ldots,a_k$ satisfying $1\le a_1<a_2<\ldots<a_k\le n$ and $\operatorname{lcm}(a_i,a_j)\le n$ for any $i,j$. Prove that $$k\le2\lfloor\sqrt n\rfloor.$$

PEN E Problems, 24

Let $p_{n}$ again denote the $n$th prime number. Show that the infinite series \[\sum^{\infty}_{n=1}\frac{1}{p_{n}}\] diverges.

2021 Ukraine National Mathematical Olympiad, 8

There are $101$ not necessarily different weights, each of which weighs an integer number of grams from $1$ g to $2020$ g. It is known that at any division of these weights into two heaps, the total weight of at least one of the piles is no more than $2020$. What is the largest number of grams can weigh all $101$ weights? (Bogdan Rublev)

2016 Switzerland - Final Round, 2

Let $a, b$ and $c$ be the sides of a triangle, that is: $a + b > c$, $b + c > a$ and $c + a > b$. Show that: $$\frac{ab+ 1}{a^2 + ca + 1} +\frac{bc + 1}{b^2 + ab + 1} +\frac{ca + 1}{c^2 + bc + 1} > \frac32$$

2011 Today's Calculation Of Integral, 744

Let $a,\ b$ be real numbers. If $\int_0^3 (ax-b)^2dx\leq 3$ holds, then find the values of $a,\ b$ such that $\int_0^3 (x-3)(ax-b)dx$ is minimized.

2009 Stars Of Mathematics, 1

Let $x_1, x_2, ... , x_n$ and $y_1, y_2, ..., y_n$ be positive real numbers so that $$x_1 + x_2 + ...+ x_n \ge x_1y_1 + x_2y_2 + ... + x_ny_n.$$ Show that for any non-negative integer $p$ the following inequality holds $$\frac{x_1}{y_1^p} +\frac{ x_2}{y_2^p} + ...+ \frac{x_n}{y_n^p} \ge x_1 + x_2 + ...+ x_n.$$

2021 Taiwan TST Round 3, A

Let $n$ and $k$ be positive integers. Prove that for $a_1, \dots, a_n \in [1,2^k]$ one has \[ \sum_{i = 1}^n \frac{a_i}{\sqrt{a_1^2 + \dots + a_i^2}} \le 4 \sqrt{kn}. \]

1991 Czech And Slovak Olympiad IIIA, 1

Prove that for any real numbers $p,q,r,\phi$,: $$\cos^2\phi+q \sin \phi \cos \phi +r\sin^2 \phi \ge \frac12 (p+r-\sqrt{(p-r)^2+q^2})$$

2010 China Team Selection Test, 2

Given positive integer $n$, find the largest real number $\lambda=\lambda(n)$, such that for any degree $n$ polynomial with complex coefficients $f(x)=a_n x^n+a_{n-1} x^{n-1}+\cdots+a_0$, and any permutation $x_0,x_1,\cdots,x_n$ of $0,1,\cdots,n$, the following inequality holds $\sum_{k=0}^n|f(x_k)-f(x_{k+1})|\geq \lambda |a_n|$, where $x_{n+1}=x_0$.

2007 Hong Kong TST, 1

[url=http://www.mathlinks.ro/Forum/viewtopic.php?t=107262]IMO 2007 HKTST 1[/url] Problem 1 Let $p,q,r$ and $s$ be real numbers such that $p^{2}+q^{2}+r^{2}-s^{2}+4=0$. Find the maximum value of $3p+2q+r-4|s|$.

1990 IMO Longlists, 21

Point $O$ is interior to triangle $ABC$. Through $O$, draw three lines $DE \parallel BC, FG \parallel CA$, and $HI \parallel AB$, where $D, G$ are on $AB$, $I, F$ are on $BC$ and $E, H$ are on $CA$. Denote by $S_1$ the area of hexagon $DGHEFI$, and $S_2$ the area of triangle $ABC$. Prove that $S_1 \geq \frac 23 S_2.$

Russian TST 2019, P3

Tags: inequalities
Find the maximal value of \[S = \sqrt[3]{\frac{a}{b+7}} + \sqrt[3]{\frac{b}{c+7}} + \sqrt[3]{\frac{c}{d+7}} + \sqrt[3]{\frac{d}{a+7}},\] where $a$, $b$, $c$, $d$ are nonnegative real numbers which satisfy $a+b+c+d = 100$. [i]Proposed by Evan Chen, Taiwan[/i]

2005 China Team Selection Test, 1

Let $a_{1}$, $a_{2}$, …, $a_{6}$; $b_{1}$, $b_{2}$, …, $b_{6}$ and $c_{1}$, $c_{2}$, …, $c_{6}$ are all permutations of $1$, $2$, …, $6$, respectively. Find the minimum value of $\sum_{i=1}^{6}a_{i}b_{i}c_{i}$.

2014 India IMO Training Camp, 2

Tags: inequalities
Let $a,b$ be positive real numbers.Prove that $(1+a)^{8}+(1+b)^{8}\geq 128ab(a+b)^{2}$.

2012 Czech-Polish-Slovak Match, 3

Tags: inequalities
Let $a,b,c,d$ be positive real numbers such that $abcd=4$ and \[a^2+b^2+c^2+d^2=10.\] Find the maximum possible value of $ab+bc+cd+da$.

1994 AIME Problems, 10

In triangle $ABC,$ angle $C$ is a right angle and the altitude from $C$ meets $\overline{AB}$ at $D.$ The lengths of the sides of $\triangle ABC$ are integers, $BD=29^3,$ and $\cos B=m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

1986 IMO Longlists, 51

Let $a, b, c, d$ be the lengths of the sides of a quadrilateral circumscribed about a circle and let $S$ be its area. Prove that $S \leq \sqrt{abcd}$ and find conditions for equality.

2010 Greece National Olympiad, 2

Tags: inequalities
If $ x,y$ are positive real numbers with sum $ 2a$, prove that : $ x^3y^3(x^2\plus{}y^2)^2 \leq 4a^{10}$ When does equality hold ? Babis

2014 IFYM, Sozopol, 1

Prove that for $\forall$ $a,b,c\in [\frac{1}{3},3]$ the following inequality is true: $\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\geq \frac{7}{5}$.

2008 Germany Team Selection Test, 1

Show that there is a digit unequal to 2 in the decimal represesentation of $ \sqrt [3]{3}$ between the $ 1000000$-th und $ 3141592$-th position after decimal point.

2018 China Team Selection Test, 5

Tags: inequalities
Given positive integers $n, k$ such that $n\ge 4k$, find the minimal value $\lambda=\lambda(n,k)$ such that for any positive reals $a_1,a_2,\ldots,a_n$, we have \[ \sum\limits_{i=1}^{n} {\frac{{a}_{i}}{\sqrt{{a}_{i}^{2}+{a}_{{i}+{1}}^{2}+{\cdots}{{+}}{a}_{{i}{+}{k}}^{2}}}} \le \lambda\] Where $a_{n+i}=a_i,i=1,2,\ldots,k$