Found problems: 6530
2016 EGMO, 1
Let $n$ be an odd positive integer, and let $x_1,x_2,\cdots ,x_n$ be non-negative real numbers. Show that \[ \min_{i=1,\ldots,n} (x_i^2+x_{i+1}^2) \leq \max_{j=1,\ldots,n} (2x_jx_{j+1}) \]where $x_{n+1}=x_1$.
2018 NZMOC Camp Selection Problems, 5
Let $a, b$ and $c$ be positive real numbers satisfying $$\frac{1}{a + 2019}+\frac{1}{b + 2019}+\frac{1}{c + 2019}=\frac{1}{2019}.$$ Prove that $abc \ge 4038^3$.
2012 Today's Calculation Of Integral, 821
Prove that : $\ln \frac{11}{27}<\int_{\frac 14}^{\frac 34} \frac{1}{\ln (1-x)}\ dx<\ln \frac{7}{15}.$
1997 Croatia National Olympiad, Problem 2
Given are real numbers $a<b<c<d$. Determine all permutations $p,q,r,s$ of the numbers $a,b,c,d$ for which the value of the sum
$$(p-q)^2+(q-r)^2+(r-s)^2+(s-p)^2$$is minimal.
2005 Singapore MO Open, 3
Let $a,b,c$ be real numbers satisfying $a<b<c,a+b+c=6,ab+bc+ac=9$. Prove that $0<a<1<b<3<c<4$
[hide="Solution"]
Let $abc=k$, then $a,b,c\ (a<b<c)$ are the roots of cubic equation $x^3-6x^2+9x-k=0\Longleftrightarrow x(x-3)^2=k$
that is to say, $a,b,c\ (a<b<c)$ are the $x$-coordinates of the interception of points between $y=x(x-3)^2$ and
$y=k$.
$y=x(x-3)^2$ have local maximuml value of $4$ at $x=1$ and local minimum value of $0$ at $x=3$.
Since the $x$-coordinate of the interception point between $y=x(x-3)^2$ and $y=4$ which is the tangent line at
local maximum point $(1,4)$ is a point $(4,4)$,Moving the line $y=k$ so that the two graphs $y=x(x-3)^2$ and
$y=k$ have the distinct three interception points,we can find that the range of $a,b,c$ are
$0<a<1,1<b<3,3<c<4
$,we are done.[/hide]
2019 Moroccan TST, 2
Let $a>1$ be a real number. Prove that for all $n\in\mathbb{N}*$ that :
$\frac{a^n-1}{n}\ge \sqrt{a}^{n+1}-\sqrt{a}^{n-1}$
1998 China National Olympiad, 2
Let $D$ be a point inside acute triangle $ABC$ satisfying the condition
\[DA\cdot DB\cdot AB+DB\cdot DC\cdot BC+DC\cdot DA\cdot CA=AB\cdot BC\cdot CA.\]
Determine (with proof) the geometric position of point $D$.
2006 Iran Team Selection Test, 4
Let $x_1,x_2,\ldots,x_n$ be real numbers. Prove that
\[ \sum_{i,j=1}^n |x_i+x_j|\geq n\sum_{i=1}^n |x_i| \]
2001 IberoAmerican, 3
Let $S$ be a set of $n$ elements and $S_1,\ S_2,\dots,\ S_k$ are subsets of $S$ ($k\geq2$), such that every one of them has at least $r$ elements.
Show that there exists $i$ and $j$, with $1\leq{i}<j\leq{k}$, such that the number of common elements of $S_i$ and $S_j$ is greater or equal to: $r-\frac{nk}{4(k-1)}$
2008 AIME Problems, 7
Let $ S_i$ be the set of all integers $ n$ such that $ 100i\leq n < 100(i \plus{} 1)$. For example, $ S_4$ is the set $ {400,401,402,\ldots,499}$. How many of the sets $ S_0, S_1, S_2, \ldots, S_{999}$ do not contain a perfect square?
2017 Serbia JBMO TST, 2
Let $x,y,z$ be positive real numbers.Prove that
$(xy^2+yz^2+zx^2)(x^2y+y^2z+z^2x)(xy+yz+zx)\geq 3(x+y+z)^2(xyz)^2.$
2010 District Olympiad, 2
Consider two real numbers $ a\in [ - 2,\infty)\ ,\ r\in [0,\infty)$ and the natural number $ n\ge 1$. Show that:
\[ r^{2n} + ar^n + 1\ge (1 - r)^{2n}\]
2014 Turkey Team Selection Test, 2
A circle $\omega$ cuts the sides $BC,CA,AB$ of the triangle $ABC$ at $A_1$ and $A_2$; $B_1$ and $B_2$; $C_1$ and $C_2$, respectively. Let $P$ be the center of $\omega$. $A'$ is the circumcenter of the triangle $A_1A_2P$, $B'$ is the circumcenter of the triangle $B_1B_2P$, $C'$ is the circumcenter of the triangle $C_1C_2P$. Prove that $AA', BB'$ and $CC'$ concur.
1998 USAMO, 3
Let $a_0,a_1,\cdots ,a_n$ be numbers from the interval $(0,\pi/2)$ such that \[ \tan (a_0-\frac{\pi}{4})+ \tan (a_1-\frac{\pi}{4})+\cdots +\tan (a_n-\frac{\pi}{4})\geq n-1. \] Prove that \[ \tan a_0\tan a_1 \cdots \tan a_n\geq n^{n+1}. \]
2010 Abels Math Contest (Norwegian MO) Final, 2a
Show that $\frac{x^2}{1 - x}+\frac{(1 - x)^2}{x} \ge 1$ for all real numbers $x$, where $0 < x < 1$
2010 Turkey Team Selection Test, 2
Show that
\[ \sum_{cyc} \sqrt[4]{\frac{(a^2+b^2)(a^2-ab+b^2)}{2}} \leq \frac{2}{3}(a^2+b^2+c^2)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right) \]
for all positive real numbers $a, \: b, \: c.$
2009 Mathcenter Contest, 5
Let $a$ and $b$ be real numbers, where $a \not= 0$ and $a \not= b$ and all the roots of the equation $ax^{3}-x^{2}+bx-1 = 0$ is a real and positive number. Find the smallest possible value of $P = \dfrac{5a^{2}-3ab+2}{a^{2}(b-a)}$.
[i](Heir of Ramanujan)[/i]
2007 Indonesia MO, 3
Let $ a,b,c$ be positive real numbers which satisfy $ 5(a^2\plus{}b^2\plus{}c^2)<6(ab\plus{}bc\plus{}ca)$. Prove that these three inequalities hold: $ a\plus{}b>c$, $ b\plus{}c>a$, $ c\plus{}a>b$.
1992 Tournament Of Towns, (320) 1
At the beginning of a month a shop has $10$ different products for sale, each with equal prices. Every day the price of each product is either doubled or trebled. By the beginning of the following month all the prices have become different. Prove that the ratio (the maximal price) /(the minimal price) is greater than $27$.
(D. Fomin and Stanislav Smirnov, St Petersburg)
2018 Junior Balkan Team Selection Tests - Romania, 2
Let $x, y,z$ be positive real numbers satisfying $2x^2+3y^2+6z^2+12(x+y+z) =108$. Find the maximum value of $x^3y^2z$.
Alexandru Gırban
1998 Croatia National Olympiad, Problem 2
If $a,b$ are nonnegative real numbers, prove the inequality
$$\frac{a+\sqrt[3]{a^2b}+\sqrt[3]{ab^2}+b}4\le\frac{\sqrt{a+\sqrt{ab}+b}}3.$$
2006 India IMO Training Camp, 1
Let $ABC$ be a triangle with inradius $r$, circumradius $R$, and with sides $a=BC,b=CA,c=AB$. Prove that
\[\frac{R}{2r} \ge \left(\frac{64a^2b^2c^2}{(4a^2-(b-c)^2)(4b^2-(c-a)^2)(4c^2-(a-b)^2)}\right)^2.\]
2008 Mathcenter Contest, 3
Let $ABC$ be a triangle whose side lengths are opposite the angle $A,B,C$ are $a,b,c$ respectively. Prove that $$\frac{ab\sin{2C}+bc\sin{ 2A}+ca\sin{2B}}{ab+bc+ca}\leq\frac{\sqrt{3}}{2}$$.
[i](nooonuii)[/i]
2013 Turkmenistan National Math Olympiad, 3
If a,b,c positive numbers and such that $a+\sqrt{b+\sqrt{c}}=c+\sqrt{b+\sqrt{a}}$. Prove that if $a\neq c$ then $40ac<1$.
1981 Putnam, B2
Determine the minimum value of
$$(r-1)^2 + \left(\frac{s}{r}-1 \right)^2 + \left(\frac{t}{s}-1 \right)^{2} + \left( \frac{4}{t} -1 \right)^2$$
for all real numbers $1\leq r \leq s \leq t \leq 4.$