Found problems: 6530
2003 Korea - Final Round, 1
Let $P$, $Q$, and $R$ be the points where the incircle of a triangle $ABC$ touches the sides $AB$, $BC$, and $CA$, respectively.
Prove the inequality $\frac{BC} {PQ} + \frac{CA} {QR} + \frac{AB} {RP} \geq 6$.
1990 National High School Mathematics League, 7
If $n\in\mathbb{Z_+}$, positive real numbers $a+b=2$, then the minumum value of $\frac{1}{1+a^n}+\frac{1}{1+b^n}$ is________.
2004 Greece Junior Math Olympiad, 3
x,y,z positive real numbers such that $x^2+y^2+z^2=25$
Find the min price of $A=\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}$
2008 Hong Kong TST, 1
Let $ \alpha_1$, $ \alpha_2$, $ \ldots$, $ \alpha_{2008}$ be real numbers. Find the maximum value of \[ \sin\alpha_1\cos\alpha_2 \plus{} \sin\alpha_2\cos\alpha_3 \plus{} \cdots \plus{} \sin\alpha_{2007}\cos\alpha_{2008} \plus{} \sin\alpha_{2008}\cos\alpha_1\]
2005 China National Olympiad, 2
A circle meets the three sides $BC,CA,AB$ of a triangle $ABC$ at points $D_1,D_2;E_1,E_2; F_1,F_2$ respectively. Furthermore, line segments $D_1E_1$ and $D_2F_2$ intersect at point $L$, line segments $E_1F_1$ and $E_2D_2$ intersect at point $M$, line segments $F_1D_1$ and $F_2E_2$ intersect at point $N$. Prove that the lines $AL,BM,CN$ are concurrent.
2011 Morocco National Olympiad, 2
Let $\alpha , \beta ,\gamma$ be the angles of a triangle $ABC$ of perimeter $ 2p $ and $R$ is the radius of its circumscribed circle.
$(a)$ Prove that
\[\cot^{2}\alpha +\cot^{2}\beta+\cot^{2}\gamma\geq 3\left(9\cdot \frac{R^{2}}{p^{2}} - 1\right).\]
$(b)$ When do we have equality?
2005 Abels Math Contest (Norwegian MO), 4b
Let $a, b$ and $c$ be real numbers such that $ab + bc + ca> a + b + c> 0$. Show then that $a+b+c>3$
2014 Junior Balkan Team Selection Tests - Romania, 1
Let $a, b, c, d$ be positive real numbers so that $abc+bcd+cda+dab = 4$.
Prove that $a^2 + b^2 + c^2 + d^2 \ge 4$
2005 France Team Selection Test, 4
Let $X$ be a non empty subset of $\mathbb{N} = \{1,2,\ldots \}$. Suppose that for all $x \in X$, $4x \in X$ and $\lfloor \sqrt{x} \rfloor \in X$. Prove that $X=\mathbb{N}$.
2003 AMC 12-AHSME, 22
Let $ ABCD$ be a rhombus with $ AC\equal{}16$ and $ BD\equal{}30$. Let $ N$ be a point on $ \overline{AB}$, and let $ P$ and $ Q$ be the feet of the perpendiculars from $ N$ to $ \overline{AC}$ and $ \overline{BD}$, respectively. Which of the following is closest to the minimum possible value of $ PQ$?
[asy]unitsize(2.5cm);
defaultpen(linewidth(.8pt)+fontsize(8pt));
pair D=(0,0), C=dir(0), A=dir(aSin(240/289)), B=shift(A)*C;
pair Np=waypoint(B--A,0.6), P=foot(Np,A,C), Q=foot(Np,B,D);
draw(A--B--C--D--cycle);
draw(A--C);
draw(B--D);
draw(Np--Q);
draw(Np--P);
label("$D$",D,SW);
label("$C$",C,SE);
label("$B$",B,NE);
label("$A$",A,NW);
label("$N$",Np,N);
label("$P$",P,SW);
label("$Q$",Q,SSE);
draw(rightanglemark(Np,P,C,2));
draw(rightanglemark(Np,Q,D,2));[/asy]$ \textbf{(A)}\ 6.5 \qquad
\textbf{(B)}\ 6.75 \qquad
\textbf{(C)}\ 7 \qquad
\textbf{(D)}\ 7.25 \qquad
\textbf{(E)}\ 7.5$
2022 Romania Team Selection Test, 3
Let $n\geq 2$ be an integer. Let $a_{ij}, \ i,j=1,2,\ldots,n$ be $n^2$ positive real numbers satisfying the following conditions:
[list=1]
[*]For all $i=1,\ldots,n$ we have $a_{ii}=1$ and,
[*]For all $j=2,\ldots,n$ the numbers $a_{ij}, \ i=1,\ldots, j-1$ form a permutation of $1/a_{ji}, \ i=1,\ldots, j-1.$
[/list]
Given that $S_i=a_{i1}+\cdots+a_{in}$, determine the maximum value of the sum $1/S_1+\cdots+1/S_n.$
2024 Junior Balkan Team Selection Tests - Moldova, 7
Find all the real numbers $x,y,z$ which satisfy the following conditions:
$$
\begin{cases}
3(x^2+y^2+z^2)=1\\
x^2y^2+y^2z^2+z^2x^2=xyz(x+y+z)^3\\
\end{cases}
$$
2002 USAMO, 2
Let $ABC$ be a triangle such that
\[ \left( \cot \dfrac{A}{2} \right)^2 + \left( 2\cot \dfrac{B}{2} \right)^2 + \left( 3\cot \dfrac{C}{2} \right)^2 = \left( \dfrac{6s}{7r} \right)^2, \]
where $s$ and $r$ denote its semiperimeter and its inradius, respectively. Prove that triangle $ABC$ is similar to a triangle $T$ whose side lengths are all positive integers with no common divisors and determine these integers.
2014 Contests, 1
Let $a_1,a_2,\dots,a_n$ be positive real numbers whose product is $1$. Show that the sum \[\textstyle\frac{a_1}{1+a_1}+\frac{a_2}{(1+a_1)(1+a_2)}+\frac{a_3}{(1+a_1)(1+a_2)(1+a_3)}+\cdots+\frac{a_n}{(1+a_1)(1+a_2)\cdots(1+a_n)}\] is greater than or equal to $\frac{2^n-1}{2^n}$.
1962 Czech and Slovak Olympiad III A, 2
Determine the set of all points $(x,y)$ in two-dimensional cartesian coordinate system such that \begin{align*}0\le &\,x\le\frac{\pi}{2}, \\ \sqrt{1-\sin 2x}-\sqrt{1+\sin 2x}\le &\,y\le\sqrt{1-\cos2x}-\sqrt{1+\cos2x}.\end{align*}
Draw a picture of the set.
2018 Mediterranean Mathematics OIympiad, 1
Let $a_1, a_2, ..., a_n$ be more than one real numbers, such that $0\leq a_i\leq \frac{\pi}{2}$. Prove that
$$\Bigg(\frac{1}{n}\sum_{i=1}^{n}\frac{1}{1+\sin a_i}\Bigg)\Bigg(1+\prod_{i=1}^{n}(\sin a_i)^{\frac{1}{n}}\Bigg)\leq1.$$
2007 Pre-Preparation Course Examination, 1
$D$ is an arbitrary point inside triangle $ABC$, and $E$ is inside triangle $BDC$. Prove that \[\frac{S_{DBC}}{(P_{DBC})^{2}}\geq\frac{S_{EBC}}{(P_{EBC})^{2}}\]
2014 Korea - Final Round, 1
Suppose $x$, $y$, $z$ are positive numbers such that $x+y+z=1$. Prove that
\[
\frac{(1+xy+yz+zx)(1+3x^3 + 3y^3 + 3z^3)}{9(x+y)(y+z)(z+x)}
\ge
\left(
\frac{x \sqrt{1+x} }{\sqrt[4]{3+9x^2}}
+ \frac{y \sqrt{1+y} }{\sqrt[4]{3+9y^2}}
+ \frac{z \sqrt{1+z}}{\sqrt[4]{3+9z^2}}
\right)^2. \]
2014 India Regional Mathematical Olympiad, 2
Let $x, y, z$ be positive real numbers. Prove that $\frac{y^2 + z^2}{x}+\frac{z^2 + x^2}{y}+\frac{x^2 + y^2}{z}\ge 2(x + y + z)$.
2009 Today's Calculation Of Integral, 461
Let $ I_n\equal{}\int_0^{\sqrt{3}} \frac{1}{1\plus{}x^{n}}\ dx\ (n\equal{}1,\ 2,\ \cdots)$.
(1) Find $ I_1,\ I_2$.
(2) Find $ \lim_{n\to\infty} I_n$.
2007 Moldova National Olympiad, 12.4
If the function $f\colon [1,2]\to R$ is such that $\int_{1}^{2}f(x) dx=\frac{73}{24}$, then show that there exists a $x_{0}\in (1;2)$ such that
\[x_{0}^{2}<f(x_{0})<x_{0}^{3}\]
[Edit: $f$ is continuous]
2001 Austrian-Polish Competition, 4
Prove that if $a,b,c,d$ are lengths of the successive sides of a quadrangle (not necessarily convex) with the area equal to $S$, then the following inequality holds \[S \leq \frac{1}{2}(ac+bd).\] For which quadrangles does the inequality become equality?
2008 All-Russian Olympiad, 8
We are given $ 3^{2k}$ apparently identical coins,one of which is fake,being lighter than the others. We also dispose of three apparently identical balances without weights, one of which is broken (and yields outcomes unrelated to the actual situations). How can we find the fake coin in $ 3k\plus{}1$ weighings?
VI Soros Olympiad 1999 - 2000 (Russia), 11.9
Find the largest $c$ such that for any $\lambda \ge 1$ there is an a that satisfies the inequality
$$\sin a + \sin (a\lambda ) \ge c.$$
1983 AIME Problems, 14
In the adjoining figure, two circles of radii 6 and 8 are drawn with their centers 12 units apart. At $P$, one of the points of intersection, a line is drawn in such a way that the chords $QP$ and $PR$ have equal length. Find the square of the length of $QP$.
[asy]unitsize(2.5mm);
defaultpen(linewidth(.8pt)+fontsize(12pt));
dotfactor=3;
pair O1=(0,0), O2=(12,0);
path C1=Circle(O1,8), C2=Circle(O2,6);
pair P=intersectionpoints(C1,C2)[0];
path C3=Circle(P,sqrt(130));
pair Q=intersectionpoints(C3,C1)[0];
pair R=intersectionpoints(C3,C2)[1];
draw(C1);
draw(C2);
//draw(O2--O1);
//dot(O1);
//dot(O2);
draw(Q--R);
label("$Q$",Q,N);
label("$P$",P,dir(80));
label("$R$",R,E);
//label("12",waypoint(O1--O2,0.4),S);[/asy]