This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2024 Spain Mathematical Olympiad, 2

Let $n$ be a positive integer. Let $x_1, x_2, \dots, x_n > 1$ be real numbers whose product is $n+1$. Prove that \[\left(\frac{1}{1^2(x_1-1)}+1\right)\left(\frac{1}{2^2(x_2-1)}+1\right)\cdots\left(\frac{1}{n^2(x_n-1)}+1\right)\geq n+1\] and find for which values equality holds.

2007 USAMO, 6

Let $ABC$ be an acute triangle with $\omega,S$, and $R$ being its incircle, circumcircle, and circumradius, respectively. Circle $\omega_{A}$ is tangent internally to $S$ at $A$ and tangent externally to $\omega$. Circle $S_{A}$ is tangent internally to $S$ at $A$ and tangent internally to $\omega$. Let $P_{A}$ and $Q_{A}$ denote the centers of $\omega_{A}$ and $S_{A}$, respectively. Define points $P_{B}, Q_{B}, P_{C}, Q_{C}$ analogously. Prove that \[8P_{A}Q_{A}\cdot P_{B}Q_{B}\cdot P_{C}Q_{C}\leq R^{3}\; , \] with equality if and only if triangle $ABC$ is equilateral.

Ukrainian TYM Qualifying - geometry, X.12

Inside the convex polygon $A_1A_2...A_n$ , there is a point $M$ such that $\sum_{k=1}^n \overrightarrow {A_kM} = \overrightarrow{0}$. Prove that $nP\ge 4d$, where $P$ is the perimeter of the polygon, and $d=\sum_{k=1}^n |\overrightarrow {A_kM}|$ . Investigate the question of the achievement of equality in this inequality.

1982 Swedish Mathematical Competition, 6

Show that \[ (2a-1) \sin x + (1-a) \sin(1-a)x \geq 0 \] for $0 \leq a \leq 1$ and $0 \leq x \leq \pi$.

2005 Georgia Team Selection Test, 3

Let $ x,y,z$ be positive real numbers,satisfying equality $ x^{2}\plus{}y^{2}\plus{}z^{2}\equal{}25$. Find the minimal possible value of the expression $ \frac{xy}{z} \plus{} \frac{yz}{x} \plus{} \frac{zx}{y}$.

1989 National High School Mathematics League, 2

Tags: inequalities
$x_i\in\mathbb{R}(i=1,2,\cdots,n;n\geq2)$, satisfying that $\sum_{i=1}^n|x_i|=1,\sum_{i=1}^nx_i=0$. Prove that $|\sum_{i=1}^n\frac{x_i}{i}|\leq\frac{1}{2}-\frac{1}{2n}$

2011 Baltic Way, 4

Let $a,b,c,d$ be non-negative reals such that $a+b+c+d=4$. Prove the inequality \[\frac{a}{a^3+8}+\frac{b}{b^3+8}+\frac{c}{c^3+8}+\frac{d}{d^3+8}\le\frac{4}{9}\]

2003 Moldova Team Selection Test, 2

Tags: inequalities
The positive reals $ x,y$ and $ z$ are satisfying the relation $ x \plus{} y \plus{} z\geq 1$. Prove that: $ \frac {x\sqrt {x}}{y \plus{} z} \plus{} \frac {y\sqrt {y}}{z \plus{} x} \plus{} \frac {z\sqrt {z}}{x \plus{} y}\geq \frac {\sqrt {3}}{2}$ [i]Proposer[/i]:[b] Baltag Valeriu[/b]

2006 International Zhautykov Olympiad, 3

Let $ ABCDEF$ be a convex hexagon such that $ AD \equal{} BC \plus{} EF$, $ BE \equal{} AF \plus{} CD$, $ CF \equal{} DE \plus{} AB$. Prove that: \[ \frac {AB}{DE} \equal{} \frac {CD}{AF} \equal{} \frac {EF}{BC}. \]

2012 Ukraine Team Selection Test, 12

We shall call the triplet of numbers $a, b, c$ of the interval $[-1,1]$ [i]qualitative [/i] if these numbers satisfy the inequality $1 + 2abc\ge a^2 + b^2 + c^2$. Prove that when the triples $a, b, c$, and $x, y, z$ are qualitative, then $ax, by, cz$ is also qualitative.

2010 Regional Olympiad of Mexico Center Zone, 3

Tags: inequalities
Let $a$, $b$ and $c$ be real positive numbers such that $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 1$ Prove that: $a^2+b^2+b^2 \ge 2a+2b+2c+9$

2007 China Team Selection Test, 3

Assume there are $ n\ge3$ points in the plane, Prove that there exist three points $ A,B,C$ satisfying $ 1\le\frac{AB}{AC}\le\frac{n\plus{}1}{n\minus{}1}.$

2016 China Second Round Olympiad, 1

Let $a_1, a_2, \ldots, a_{2016}$ be real numbers such that $9a_i\ge 11a^2_{i+1}$ $(i=,2,\cdots,2015)$. Find the maximum value of $(a_1-a^2_2)(a_2-a^2_3)\cdots (a_{2015}-a^2_{2016})(a_{2016}-a^2_{1}).$

2012 JBMO TST - Turkey, 1

Let $a, b, c$ be the side-lengths of a triangle, $r$ be the inradius and $r_a, r_b, r_c$ be the corresponding exradius. Show that \[ \frac{a+b+c}{\sqrt{a^2+b^2+c^2}} \leq 2 \cdot \frac{\sqrt{{r_a}^2+{r_b}^2+{r_c}^2}}{r_a+r_b+r_c-3r} \]

2016 India Regional Mathematical Olympiad, 5

Let $x,y,z$ be non-negative real numbers such that $xyz=1$. Prove that $$(x^3+2y)(y^3+2z)(z^3+2x) \ge 27.$$

2001 Finnish National High School Mathematics Competition, 3

Numbers $a, b$ and $c$ are positive integers and $\frac{1}{a}+\frac{1}{b}+\frac{ 1}{c}< 1.$ Show that \[\frac{1}{a}+\frac{1}{b}+\frac{ 1}{c}\leq \frac{41}{42}.\]

2022 Moldova Team Selection Test, 10

Tags: inequalities
Let $P(X)$ be a polynomial with positive coefficients. Show that for every integer $n \geq 2$ and every $n$ positive numbers $x_1, x_2,..., x_n$ the following inequality is true: $$P\left(\frac{x_1}{x_2} \right)^2+P\left(\frac{x_2}{x_3} \right)^2+ ... +P\left(\frac{x_n}{x_1} \right)^2 \geq n \cdot P(1)^2.$$ When does the equality take place?

1996 IMO Shortlist, 7

Let $ABC$ be an acute triangle with circumcenter $O$ and circumradius $R$. $AO$ meets the circumcircle of $BOC$ at $A'$, $BO$ meets the circumcircle of $COA$ at $B'$ and $CO$ meets the circumcircle of $AOB$ at $C'$. Prove that \[OA'\cdot OB'\cdot OC'\geq 8R^{3}.\] Sorry if this has been posted before since this is a very classical problem, but I failed to find it with the search-function.

2010 Contests, 2

Tags: inequalities
If $ x,y$ are positive real numbers with sum $ 2a$, prove that : $ x^3y^3(x^2\plus{}y^2)^2 \leq 4a^{10}$ When does equality hold ? Babis

2014 China Girls Math Olympiad, 2

Let $x_1,x_2,\ldots,x_n $ be real numbers, where $n\ge 2$ is a given integer, and let $\lfloor{x_1}\rfloor,\lfloor{x_2}\rfloor,\ldots,\lfloor{x_n}\rfloor $ be a permutation of $1,2,\ldots,n$. Find the maximum and minimum of $\sum\limits_{i=1}^{n-1}\lfloor{x_{i+1}-x_i}\rfloor$ (here $\lfloor x\rfloor $ is the largest integer not greater than $x$).

2008 Indonesia TST, 2

Let $\{a_n\}_{n \in N}$ be a sequence of real numbers with $a_1 = 2$ and $a_n =\frac{n^2 + 1}{\sqrt{n^3 - 2n^2 + n}}$ for all positive integers $n \ge 2$. Let $s_n = a_1 + a_2 + ...+ a_n$ for all positive integers $n$. Prove that $$\frac{1}{s_1s_2}+\frac{1}{s_2s_3}+ ...+\frac{1}{s_ns_{n+1}}<\frac15$$ for all positive integers $n$.

1979 IMO Shortlist, 13

Show that $\frac{20}{60} <\sin 20^{\circ} < \frac{21}{60}.$

2009 Estonia Team Selection Test, 4

Points $A', B', C'$ are chosen on the sides $BC, CA, AB$ of triangle $ABC$, respectively, so that $\frac{|BA'|}{|A'C|}=\frac{|CB'|}{|B'A|}=\frac{|AC'|}{|C'B|}$. The line which is parallel to line $B'C'$ and goes through point $A$ intersects the lines $AC$ and $AB$ at $P$ and $Q$, respectively. Prove that $\frac{|PQ|}{|B'C'|} \ge 2$

2013 Czech And Slovak Olympiad IIIA, 6

Find all positive real numbers $p$ such that $\sqrt{a^2 + pb^2} +\sqrt{b^2 + pa^2} \ge a + b + (p - 1) \sqrt{ab}$ holds for any pair of positive real numbers $a, b$.

2012 Bogdan Stan, 2

Prove the complex inequality $ |x|+|y|+|z|\le |x+y+z| +|x-z| +|z-y|+|y-z|. $