This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2014 ELMO Shortlist, 5

Define a [i]beautiful number[/i] to be an integer of the form $a^n$, where $a\in\{3,4,5,6\}$ and $n$ is a positive integer. Prove that each integer greater than $2$ can be expressed as the sum of pairwise distinct beautiful numbers. [i]Proposed by Matthew Babbitt[/i]

2005 Thailand Mathematical Olympiad, 6

Let $a, b, c$ be distinct real numbers. Prove that $$\left(\frac{2a - b}{a -b} \right)^2+\left(\frac{2b - c}{b - c} \right)^2+\left(\frac{2c - a}{c - a} \right)^2 \ge 5$$

2007 Kyiv Mathematical Festival, 5

Tags: inequalities
Let $a,b,c>0$ and $abc\ge1.$ Prove that a) $\left(a+\frac{1}{a+1}\right)\left(b+\frac{1}{b+1}\right) \left(c+\frac{1}{c+1}\right)\ge\frac{27}{8}.$ b)$27(a^{3}+a^{2}+a+1)(b^{3}+b^{2}+b+1)(c^{3}+c^{2}+c+1)\ge$ $\ge 64(a^{2}+a+1)(b^{2}+b+1)(c^{2}+c+1).$ [hide="Generalization"]$n^{3}(a^{n}+\ldots+a+1)(b^{n}+\ldots+b+1)(c^{n}+\ldots+c+1)\ge$ $\ge (n+1)^{3}(a^{n-1}+\ldots+a+1)(b^{n-1}+\ldots+b+1)(c^{n-1}+\ldots+c+1),\ n\ge1.$ [/hide]

2014 IberoAmerican, 3

Given a set $X$ and a function $f: X \rightarrow X$, for each $x \in X$ we define $f^1(x)=f(x)$ and, for each $j \ge 1$, $f^{j+1}(x)=f(f^j(x))$. We say that $a \in X$ is a fixed point of $f$ if $f(a)=a$. For each $x \in \mathbb{R}$, let $\pi (x)$ be the quantity of positive primes lesser or equal to $x$. Given an positive integer $n$, we say that $f: \{1,2, \dots, n\} \rightarrow \{1,2, \dots, n\}$ is [i]catracha[/i] if $f^{f(k)}(k)=k$, for every $k=1, 2, \dots n$. Prove that: (a) If $f$ is catracha, $f$ has at least $\pi (n) -\pi (\sqrt{n}) +1$ fixed points. (b) If $n \ge 36$, there exists a catracha function $f$ with exactly $ \pi (n) -\pi (\sqrt{n}) + 1$ fixed points.

1976 IMO Longlists, 12

Tags: inequalities
Five points lie on the surface of a ball of unit radius. Find the maximum of the smallest distance between any two of them.

2005 South East Mathematical Olympiad, 8

Let $0 < \alpha, \beta, \gamma < \frac{\pi}{2}$ and $\sin^{3} \alpha + \sin^{3} \beta + \sin^3 \gamma = 1$. Prove that \[ \tan^{2} \alpha + \tan^{2} \beta + \tan^{2} \gamma \geq \frac{3 \sqrt{3}}{2} . \]

2007 Vietnam Team Selection Test, 3

Given a triangle $ABC$. Find the minimum of \[\frac{\cos^{2}\frac{A}{2}\cos^{2}\frac{B}{2}}{\cos^{2}\frac{C}{2}}+\frac{\cos^{2}\frac{B}{2}\cos^{2}\frac{C}{2}}{\cos^{2}\frac{A}{2}}+\frac{\cos^{2}\frac{C}{2}\cos^{2}\frac{A}{2}}{\cos^{2}\frac{B}{2}}. \]

PEN H Problems, 23

Find all $(x,y,z) \in {\mathbb{Z}}^3$ such that $x^{3}+y^{3}+z^{3}=x+y+z=3$.

2001 Junior Balkan Team Selection Tests - Romania, 3

Let $n\ge 2$ be a positive integer. Find the positive integers $x$ \[\sqrt{x+\sqrt{x+\ldots +\sqrt{x}}}<n \] for any number of radicals.

2009 Romania Team Selection Test, 2

Let $m<n$ be two positive integers, let $I$ and $J$ be two index sets such that $|I|=|J|=n$ and $|I\cap J|=m$, and let $u_k$, $k\in I\cup J$ be a collection of vectors in the Euclidean plane such that \[|\sum_{i\in I}u_i|=1=|\sum_{j\in J}u_j|.\] Prove that \[\sum_{k\in I\cup J}|u_k|^2\geq \frac{2}{m+n}\] and find the cases of equality.

2016 District Olympiad, 3

Tags: inequalities
Let be nonnegative real numbers $ a,b,c, $ holding the inequality: $ \sum_{\text{cyc}} \frac{a}{b+c+1} \le 1. $ Prove that $ \sum_{\text{cyc}} \frac{1}{b+c+1} \ge 1. $

1990 India Regional Mathematical Olympiad, 2

Tags: inequalities
For all positive real numbers $ a,b,c$, prove that \[ \frac {a}{b \plus{} c} \plus{} \frac {b}{c \plus{} a} \plus{} \frac {c}{a \plus{} b} \geq \frac {3}{2}.\]

2016 All-Russian Olympiad, 7

All russian olympiad 2016,Day 2 ,grade 9,P8 : Let $a, b, c, d$ be are positive numbers such that $a+b+c+d=3$ .Prove that$$\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}\le\frac{1}{a^2b^2c^2d^2}$$ All russian olympiad 2016,Day 2,grade 11,P7 : Let $a, b, c, d$ be are positive numbers such that $a+b+c+d=3$ .Prove that $$\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\le\frac{1}{a^3b^3c^3d^3}$$ Russia national 2016

2022 Malaysian IMO Team Selection Test, 1

Given an acute triangle $ABC$, mark $3$ points $X, Y, Z$ in the interior of the triangle. Let $X_1, X_2, X_3$ be the projections of $X$ to $BC, CA, AB$ respectively, and define the points $Y_i, Z_i$ similarly for $i=1, 2, 3$. a) Suppose that $X_iY_i<X_iZ_i$ for all $i=1,2,3$, prove that $XY<XZ$. b) Prove that this is not neccesarily true, if triangle $ABC$ is allowed to be obtuse. [i]Proposed by Ivan Chan Kai Chin[/i]

2011 China Girls Math Olympiad, 3

The positive reals $a,b,c,d$ satisfy $abcd=1$. Prove that $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d} + \frac{9}{{a + b + c + d}} \geqslant \frac{{25}}{4}$.

1985 Swedish Mathematical Competition, 1

If $a > b > 0$, prove the inequality $$\frac{(a-b)^2}{8a}< \frac{a+b}{2}- \sqrt{ab} < \frac{(a-b)^2}{8b}.$$

2012 Romania Team Selection Test, 2

Let $f, g:\mathbb{Z}\rightarrow [0,\infty )$ be two functions such that $f(n)=g(n)=0$ with the exception of finitely many integers $n$. Define $h:\mathbb{Z}\rightarrow [0,\infty )$ by \[h(n)=\max \{f(n-k)g(k): k\in\mathbb{Z}\}.\] Let $p$ and $q$ be two positive reals such that $1/p+1/q=1$. Prove that \[ \sum_{n\in\mathbb{Z}}h(n)\geq \Bigg(\sum_{n\in\mathbb{Z}}f(n)^p\Bigg)^{1/p}\Bigg(\sum_{n\in\mathbb{Z}}g(n)^q\Bigg)^{1/q}.\]

I Soros Olympiad 1994-95 (Rus + Ukr), 11.5

Function $f(x)$. which is defined on the set of non-negative real numbers, acquires real values. It is known that $f(0)\le 0$ and the function $f(x)/x$ is increasing for $x>0$. Prove that for arbitrary $x\ge 0$ and $y\ge 0$, holds the inequality $f(x+y)\ge f(x)+ f(y)$ .

2010 Mediterranean Mathematics Olympiad, 2

Given the positive real numbers $a_{1},a_{2},\dots,a_{n},$ such that $n>2$ and $a_{1}+a_{2}+\dots+a_{n}=1,$ prove that the inequality \[ \frac{a_{2}\cdot a_{3}\cdot\dots\cdot a_{n}}{a_{1}+n-2}+\frac{a_{1}\cdot a_{3}\cdot\dots\cdot a_{n}}{a_{2}+n-2}+\dots+\frac{a_{1}\cdot a_{2}\cdot\dots\cdot a_{n-1}}{a_{n}+n-2}\leq\frac{1}{\left(n-1\right)^{2}}\] does holds.

2011 ISI B.Math Entrance Exam, 5

Consider a sequence denoted by $F_n$ of non-square numbers . $F_1=2$,$F_2=3$,$F_3=5$ and so on . Now , if $m^2\leq F_n<(m+1)^2$ . Then prove that $m$ is the integer closest to $\sqrt{n}$.

2002 APMO, 1

Let $a_1,a_2,a_3,\ldots,a_n$ be a sequence of non-negative integers, where $n$ is a positive integer. Let \[ A_n={a_1+a_2+\cdots+a_n\over n}\ . \] Prove that \[ a_1!a_2!\ldots a_n!\ge\left(\lfloor A_n\rfloor !\right)^n \] where $\lfloor A_n\rfloor$ is the greatest integer less than or equal to $A_n$, and $a!=1\times 2\times\cdots\times a$ for $a\ge 1$(and $0!=1$). When does equality hold?

2017 Junior Balkan Team Selection Tests - Moldova, Problem 2

Tags: inequalities
Let $a,b,c$ be the sidelengths of a triangle. Prove that $$2<\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}<\sqrt{6}.$$

2014 China Team Selection Test, 1

Prove that for any positive integers $k$ and $N$, \[\left(\frac{1}{N}\sum\limits_{n=1}^{N}(\omega (n))^k\right)^{\frac{1}{k}}\leq k+\sum\limits_{q\leq N}\frac{1}{q},\] where $\sum\limits_{q\leq N}\frac{1}{q}$ is the summation over of prime powers $q\leq N$ (including $q=1$). Note: For integer $n>1$, $\omega (n)$ denotes number of distinct prime factors of $n$, and $\omega (1)=0$.

2004 China Team Selection Test, 2

Convex quadrilateral $ ABCD$ is inscribed in a circle, $ \angle{A}\equal{}60^o$, $ BC\equal{}CD\equal{}1$, rays $ AB$ and $ DC$ intersect at point $ E$, rays $ BC$ and $ AD$ intersect each other at point $ F$. It is given that the perimeters of triangle $ BCE$ and triangle $ CDF$ are both integers. Find the perimeter of quadrilateral $ ABCD$.

2014 ELMO Shortlist, 2

Tags: inequalities
Given positive reals $a,b,c,p,q$ satisfying $abc=1$ and $p \geq q$, prove that \[ p \left(a^2+b^2+c^2\right) + q\left( \frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) \geq (p+q) (a+b+c). \][i]Proposed by AJ Dennis[/i]