This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2018 Czech-Polish-Slovak Junior Match, 6

Positive real numbers $a, b$ are such that $a^3 + b^3 = 2$. Show that that $\frac{1}{a}+\frac{1}{b}\ge 2(a^2 - a + 1)(b^2 - b + 1)$.

1981 Austrian-Polish Competition, 3

Given is a triangle $ABC$, the inscribed circle $G$ of which has radius $r$. Let $r_a$ be the radius of the circle touching $AB$, $AC$ and $G$. [This circle lies inside triangle $ABC$.] Define $r_b$ and $r_c$ similarly. Prove that $r_a + r_b + r_c \geq r$ and find all cases in which equality occurs. [i]Bosnia - Herzegovina Mathematical Olympiad 2002[/i]

1965 Spain Mathematical Olympiad, 4

Tags: inequalities
Find all the intervals $I$ where any element of the interval $x \in I$ satisfies $$\cos x +\sin x >1.$$ Do the same computation when $x$ satisfies $$\cos x +\vert \sin x \vert>1.$$

2014 USAJMO, 1

Let $a$, $b$, $c$ be real numbers greater than or equal to $1$. Prove that \[ \min \left(\frac{10a^2-5a+1}{b^2-5b+10},\frac{10b^2-5b+1}{c^2-5c+10},\frac{10c^2-5c+1}{a^2-5a+10}\right )\leq abc. \]

2024 China Girls Math Olympiad, 7

Tags: inequalities
Let $n$ be a positive integer. If $x_1, x_2, \ldots, x_n \geq 0$, $x_1+x_2+\ldots+x_n=1$ and, assuming $x_{n+1}=x_1$, find the maximal value of $$\sum_{k=1}^n \frac{1+x_k^2+x_k^4}{1+x_{k+1}+x_{k+1}^2+x_{k+1}^3+x_{k+1}^4}.$$

2010 Polish MO Finals, 3

Real number $C > 1$ is given. Sequence of positive real numbers $a_1, a_2, a_3, \ldots$, in which $a_1=1$ and $a_2=2$, satisfy the conditions \[a_{mn}=a_ma_n, \] \[a_{m+n} \leq C(a_m + a_n),\] for $m, n = 1, 2, 3, \ldots$. Prove that $a_n = n$ for $n=1, 2, 3, \ldots$.

2000 USA Team Selection Test, 3

Let $p$ be a prime number. For integers $r, s$ such that $rs(r^2 - s^2)$ is not divisible by $p$, let $f(r, s)$ denote the number of integers $n \in \{1, 2, \ldots, p - 1\}$ such that $\{rn/p\}$ and $\{sn/p\}$ are either both less than $1/2$ or both greater than $1/2$. Prove that there exists $N > 0$ such that for $p \geq N$ and all $r, s$, \[ \left\lceil \frac{p-1}{3} \right\rceil \le f(r, s) \le \left\lfloor \frac{2(p-1)}{3} \right\rfloor. \]

1999 Swedish Mathematical Competition, 5

$x_i$ are non-negative reals. $x_1 + x_2 + ...+ x_n = s$. Show that $x_1x_2 + x_2x_3 + ... + x_{n-1}x_n \le \frac{s^2}{4}$.

2010 AMC 12/AHSME, 19

Each of 2010 boxes in a line contains a single red marble, and for $ 1 \le k \le 2010$, the box in the $ kth$ position also contains $ k$ white marbles. Isabella begins at the first box and successively draws a single marble at random from each box, in order. She stops when she first draws a red marble. Let $ P(n)$ be the probability that Isabella stops after drawing exactly $ n$ marbles. What is the smallest value of $ n$ for which $ P(n) < \frac {1}{2010}$? $ \textbf{(A)}\ 45 \qquad \textbf{(B)}\ 63 \qquad \textbf{(C)}\ 64 \qquad \textbf{(D)}\ 201 \qquad \textbf{(E)}\ 1005$

2009 District Olympiad, 1

Let $ f:[0,\infty )\longrightarrow [0,\infty ) $ a nonincreasing function that satisfies the inequality: $$ \int_0^x f(t)dt <1,\quad\forall x\ge 0. $$ Prove the following affirmations: [b]a)[/b] $ \exists \lim_{x\to\infty} \int_0^x f(t)dt \in\mathbb{R} . $ [b]b)[/b] $ \lim_{x\to\infty} xf(x) =0. $

2013 Putnam, 5

For $m\ge 3,$ a list of $\binom m3$ real numbers $a_{ijk}$ $(1\le i<j<k\le m)$ is said to be [i]area definite[/i] for $\mathbb{R}^n$ if the inequality \[\sum_{1\le i<j<k\le m}a_{ijk}\cdot\text{Area}(\triangle A_iA_jA_k)\ge0\] holds for every choice of $m$ points $A_1,\dots,A_m$ in $\mathbb{R}^n.$ For example, the list of four numbers $a_{123}=a_{124}=a_{134}=1, a_{234}=-1$ is area definite for $\mathbb{R}^2.$ Prove that if a list of $\binom m3$ numbers is area definite for $\mathbb{R}^2,$ then it is area definite for $\mathbb{R}^3.$

2004 France Team Selection Test, 3

Each point of the plane with two integer coordinates is the center of a disk with radius $ \frac {1} {1000}$. Prove that there exists an equilateral triangle whose vertices belong to distinct disks. Prove that such a triangle has side-length greater than 96.

2010 Contests, 4

Let $P(x)=ax^3+bx^2+cx+d$ be a polynomial with real coefficients such that \[\min\{d,b+d\}> \max\{|{c}|,|{a+c}|\}\] Prove that $P(x)$ do not have a real root in $[-1,1]$.

1998 Romania National Olympiad, 3

Suppose $f:\mathbb{R}\to\mathbb{R}$ is a differentiable function for which the inequality $f'(x) \leq f'(x+\frac{1}{n})$ holds for every $x\in\mathbb{R}$ and every $n\in\mathbb{N}$.Prove that f is continiously differentiable

2010 Korea - Final Round, 1

Given an arbitrary triangle $ ABC$, denote by $ P,Q,R$ the intersections of the incircle with sides $ BC, CA, AB$ respectively. Let the area of triangle $ ABC$ be $ T$, and its perimeter $ L$. Prove that the inequality \[\left(\frac {AB}{PQ}\right)^3 \plus{}\left(\frac {BC}{QR}\right)^3 \plus{}\left(\frac {CA}{RP}\right)^3 \geq \frac {2}{\sqrt {3}} \cdot \frac {L^2}{T}\] holds.

2021 Czech-Polish-Slovak Junior Match, 4

Find the smallest value that the expression takes $x^4 + y^4 - x^2y - xy^2$, for positive numbers $x$ and $y$ satisfying $x + y \le 1$.

2008 German National Olympiad, 4

Find the smallest constant $ C$ such that for all real $ x,y$ \[ 1\plus{}(x\plus{}y)^2 \leq C \cdot (1\plus{}x^2) \cdot (1\plus{}y^2)\] holds.

2014 PUMaC Algebra A, 7

Tags: inequalities
$x$, $y$, and $z$ are positive real numbers that satisfy $x^3+2y^3+6z^3=1$. Let $k$ be the maximum possible value of $2x+y+3z$. Let $n$ be the smallest positive integer such that $k^n$ is an integer. Find the value of $k^n+n$.

KoMaL A Problems 2017/2018, A. 702

Fix a triangle $ABC$. We say that triangle $XYZ$ is elegant if $X$ lies on segment $BC$, $Y$ lies on segment $CA$, $Z$ lies on segment $AB$, and $XYZ$ is similar to $ABC$ (i.e., $\angle A=\angle X, \angle B=\angle Y, \angle C=\angle Z $). Of all the elegant triangles, which one has the smallest perimeter?

2002 Croatia National Olympiad, Problem 2

Prove that for any positive number $a,b,c$ and any nonnegative integer $p$ $$a^{p+2}+b^{p+2}+c^{p+2}\ge a^pbc+b^pca+c^pab.$$

2005 Georgia Team Selection Test, 10

Let $ a,b,c$ be positive numbers, satisfying $ abc\geq 1$. Prove that \[ a^{3} \plus{} b^{3} \plus{} c^{3} \geq ab \plus{} bc \plus{} ca.\]

2013 Cuba MO, 7

Let $x, y, z$ be positive real numbers whose sum is $2013$. Find the maximum possible value of $$\frac{(x^2+y^2+z^2)(x^3+y^3+z^3)}{ (x^4+y^4+z^4)}.$$

2009 Silk Road, 1

Tags: inequalities
Prove that, abc≤1 and a,b,c>0 \[\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq 1+ \frac{6}{a+b+c} \]

2007 Germany Team Selection Test, 3

Let $ ABC$ be a triangle and $ P$ an arbitrary point in the plane. Let $ \alpha, \beta, \gamma$ be interior angles of the triangle and its area is denoted by $ F.$ Prove: \[ \ov{AP}^2 \cdot \sin 2\alpha + \ov{BP}^2 \cdot \sin 2\beta + \ov{CP}^2 \cdot \sin 2\gamma \geq 2F \] When does equality occur?

2016 Belarus Team Selection Test, 1

Prove for positive $a,b,c$ that $$ (a^2+\frac{b^2}{c^2})(b^2+\frac{c^2}{a^2})(c^2+\frac{a^2}{b^2}) \geq abc (a+\frac{1}{a})(b+\frac{1}{b})(c+\frac{1}{c})$$