This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 288

2015 Indonesia MO Shortlist, N2

Suppose that $a, b$ are natural numbers so that all the roots of $x^2 + ax - b$ and $x^2 - ax + b$ are integers. Show that exists a right triangle with integer sides, with $a$ the length of the hypotenuse and $b$ the area .

2019 Durer Math Competition Finals, 7

Find the smallest positive integer $n$ with the following property: if we write down all positive integers from $1$ to $10^n$ and add together the reciprocals of every non-zero digit written down, we obtain an integer.

2002 Rioplatense Mathematical Olympiad, Level 3, 2

Let $\lambda$ be a real number such that the inequality $0 <\sqrt {2002} - \frac {a} {b} <\frac {\lambda} {ab}$ holds for an infinite number of pairs $ (a, b)$ of positive integers. Prove that $\lambda \geq 5 $.

2018 Dutch BxMO TST, 2

Let $\vartriangle ABC$ be a triangle of which the side lengths are positive integers which are pairwise coprime. The tangent in $A$ to the circumcircle intersects line $BC$ in $D$. Prove that $BD$ is not an integer.

1981 Czech and Slovak Olympiad III A, 5

Let $n$ be a positive integer. Determine the maximum of the sum $x_1+\cdots+x_n$ where $x_1,\ldots,x_n$ are non-negative integers satisfying the condition \[x_1^3+\cdots+x_n^3\le7n.\]

2015 JBMO Shortlist, NT1

What is the greatest number of integers that can be selected from a set of $2015$ consecutive numbers so that no sum of any two selected numbers is divisible by their difference?

2004 Tournament Of Towns, 4

Arithmetical progression $a_1, a_2, a_3, a_4,...$ contains $a_1^2 , a_2^2$ and $a_3^2$ at some positions. Prove that all terms of this progression are integers.

2021 239 Open Mathematical Olympiad, 1

You are given $n$ different primes $p_1, p_2,..., p_n$. Consider the polynomial $$x^n + a_1x^{n -1} + a_2x^{n - 2} + ...+ a_{n - 1}x + a_n$$, where $a_i$ is the product of the first $i$ given prime numbers. For what $n$ can it have an integer root?

1991 Spain Mathematical Olympiad, 2

Given two distinct elements $a,b \in \{-1,0,1\}$, consider the matrix $A$ . Find a subset $S$ of the set of the rows of $A$, of minimum size, such that every other row of $A$ is a linear combination of the rows in $S$ with integer coefficients.

2010 Contests, 3

Consider a triangle $XYZ$ and a point $O$ in its interior. Three lines through $O$ are drawn, parallel to the respective sides of the triangle. The intersections with the sides of the triangle determine six line segments from $O$ to the sides of the triangle. The lengths of these segments are integer numbers $a, b, c, d, e$ and $f$ (see figure). Prove that the product $a \cdot b \cdot c\cdot d \cdot e \cdot f$ is a perfect square. [asy] unitsize(1 cm); pair A, B, C, D, E, F, O, X, Y, Z; X = (1,4); Y = (0,0); Z = (5,1.5); O = (1.8,2.2); A = extension(O, O + Z - X, X, Y); B = extension(O, O + Y - Z, X, Y); C = extension(O, O + X - Y, Y, Z); D = extension(O, O + Z - X, Y, Z); E = extension(O, O + Y - Z, Z, X); F = extension(O, O + X - Y, Z, X); draw(X--Y--Z--cycle); draw(A--D); draw(B--E); draw(C--F); dot("$A$", A, NW); dot("$B$", B, NW); dot("$C$", C, SE); dot("$D$", D, SE); dot("$E$", E, NE); dot("$F$", F, NE); dot("$O$", O, S); dot("$X$", X, N); dot("$Y$", Y, SW); dot("$Z$", Z, dir(0)); label("$a$", (A + O)/2, SW); label("$b$", (B + O)/2, SE); label("$c$", (C + O)/2, SE); label("$d$", (D + O)/2, SW); label("$e$", (E + O)/2, SE); label("$f$", (F + O)/2, NW); [/asy]

1965 Polish MO Finals, 2

Prove that if the numbers $ x_1 $ and $ x_2 $ are roots of the equation $ x^2 + px - 1 = 0 $, where $ p $ is an odd number, then for every natural $n$number $ x_1^n + x_2^n $ and $ x_1^{n+1} + x_2^{n+1} $ are integer and coprime.

1988 Austrian-Polish Competition, 1

Let $P(x)$ be a polynomial with integer coefficients. Show that if $Q(x) = P(x) +12$ has at least six distinct integer roots, then $P(x)$ has no integer roots.

2013 India PRMO, 3

Tags: algebra , sum , integer
It is given that the equation $x^2 + ax + 20 = 0$ has integer roots. What is the sum of all possible values of $a$?

2008 Hanoi Open Mathematics Competitions, 1

How many integers are there in $(b,2008b]$, where $b$ ($b > 0$) is given.

2015 India Regional MathematicaI Olympiad, 6

Find all real numbers $a$ such that $3 < a < 4$ and $a(a-3\{a\})$ is an integer. (Here $\{a\}$ denotes the fractional part of $a$.)

2015 Germany Team Selection Test, 2

A positive integer $n$ is called [i]naughty[/i] if it can be written in the form $n=a^b+b$ with integers $a,b \geq 2$. Is there a sequence of $102$ consecutive positive integers such that exactly $100$ of those numbers are naughty?

2018 Junior Regional Olympiad - FBH, 5

Find all integers $x$ and $y$ such that $2^x+1=y^2$

2017 Hanoi Open Mathematics Competitions, 10

Find all non-negative integers $a, b, c$ such that the roots of equations: $\begin{cases}x^2 - 2ax + b = 0 \\ x^2- 2bx + c = 0 \\ x^2 - 2cx + a = 0 \end{cases}$ are non-negative integers.

1989 Nordic, 4

For which positive integers $n$ is the following statement true: if $a_1, a_2, ... , a_n$ are positive integers, $a_k \le n$ for all $k$ and $\sum\limits_{k=1}^{{n}}{a_k}=2n$ then it is always possible to choose $a_{i1} , a_{i2} , ..., a_{ij}$ in such a way that the indices $i_1, i_2,... , i_j$ are different numbers, and $\sum\limits_{k=1}^{{{j}}}{a_{ik}}=n$?

2016 Germany Team Selection Test, 2

The positive integers $a_1,a_2, \dots, a_n$ are aligned clockwise in a circular line with $n \geq 5$. Let $a_0=a_n$ and $a_{n+1}=a_1$. For each $i \in \{1,2,\dots,n \}$ the quotient \[ q_i=\frac{a_{i-1}+a_{i+1}}{a_i} \] is an integer. Prove \[ 2n \leq q_1+q_2+\dots+q_n < 3n. \]

2002 Moldova Team Selection Test, 4

Let $C$ be the circle with center $O(0,0)$ and radius $1$, and $A(1,0), B(0,1)$ be points on the circle. Distinct points $A_1,A_2, ....,A_{n-1}$ on $C$ divide the smaller arc $AB$ into $n$ equal parts ($n \ge 2$). If $P_i$ is the orthogonal projection of $A_i$ on $OA$ ($i =1, ... ,n-1$), find all values of $n$ such that $P_1A^{2p}_1 +P_2A^{2p}_2 +...+P_{n-1}A^{2p}_{n-1}$ is an integer for every positive integer $p$.

1983 Brazil National Olympiad, 3

Show that $1 + 1/2 + 1/3 + ... + 1/n$ is not an integer for $n > 1$.

1918 Eotvos Mathematical Competition, 2

Find three distinct natural numbers such that the sum of their reciprocals is an integer.

2001 Austrian-Polish Competition, 6

Let $k$ be a fixed positive integer. Consider the sequence definited by \[a_{0}=1 \;\; , a_{n+1}=a_{n}+\left\lfloor\root k \of{a_{n}}\right\rfloor \;\; , n=0,1,\cdots\] where $\lfloor x\rfloor$ denotes the greatest integer less than or equal to $x$. For each $k$ find the set $A_{k}$ containing all integer values of the sequence $(\sqrt[k]{a_{n}})_{n\geq 0}$.

2008 Greece JBMO TST, 4

Product of two integers is $1$ less than three times of their sum. Find those integers.