Found problems: 1687
2017 Romania National Olympiad, 1
[b]a)[/b] Let be a continuous function $ f:\mathbb{R}_{\ge 0}\longrightarrow\mathbb{R}_{>0} . $ Show that there exists a natural number $ n_0 $ and a sequence of positive real numbers $ \left( x_n \right)_{n>n_0} $ that satisfy the following relation.
$$ n\int_0^{x_n} f(t)dt=1,\quad n_0<\forall n\in\mathbb{N} $$
[b]b)[/b] Prove that the sequence $ \left( nx_n \right)_{n> n_0} $ is convergent and find its limit.
2012 Today's Calculation Of Integral, 850
Evaluate
\[\int_0^{\pi} \{(1-x\sin 2x)e^{\cos ^2 x}+(1+x\sin 2x)e^{\sin ^ 2 x}\}\ dx.\]
1993 Balkan MO, 2
A positive integer given in decimal representation $\overline{ a_na_{n-1} \ldots a_1a_0 }$ is called [i]monotone[/i] if $a_n\leq a_{n-1} \leq \cdots \leq a_0$. Determine the number of monotone positive integers with at most 1993 digits.
2021 CMIMC Integration Bee, 10
$$\int_{-\infty}^\infty\frac{x\arctan(x)}{x^4+1}\,dx$$
[i]Proposed by Connor Gordon[/i]
1964 Miklós Schweitzer, 2
Let $ p$ be a prime and let \[ l_k(x,y)\equal{}a_kx\plus{}b_ky \;(k\equal{}1,2,...,p^2)\ .\] be homogeneous linear polynomials with integral coefficients. Suppose that for every pair $ (\xi,\eta)$ of integers, not both divisible by $ p$, the values $ l_k(\xi,\eta), \;1\leq k\leq p^2 $, represent every residue class $ \textrm{mod} \;p$ exactly $ p$ times. Prove that the set of pairs $ \{(a_k,b_k): 1\leq k \leq p^2 \}$ is identical $ \textrm{mod} \;p$ with the set $ \{(m,n): 0\leq m,n \leq p\minus{}1 \}.$
1997 China Team Selection Test, 3
Prove that there exists $m \in \mathbb{N}$ such that there exists an integral sequence $\lbrace a_n \rbrace$ which satisfies:
[b]I.[/b] $a_0 = 1, a_1 = 337$;
[b]II.[/b] $(a_{n + 1} a_{n - 1} - a_n^2) + \frac{3}{4}(a_{n + 1} + a_{n - 1} - 2a_n) = m, \forall$ $n \geq 1$;
[b]III. [/b]$\frac{1}{6}(a_n + 1)(2a_n + 1)$ is a perfect square $\forall$ $n \geq 1$.
2011 Today's Calculation Of Integral, 713
If a positive sequence $\{a_n\}_{n\geq 1}$ satisfies $\int_0^{a_n} x^{n}\ dx=2$, then find $\lim_{n\to\infty} a_n.$
2011 Today's Calculation Of Integral, 714
Find the area enclosed by the graph of $a^2x^4=b^2x^2-y^2\ (a>0,\ b>0).$
Today's calculation of integrals, 897
Find the volume $V$ of the solid formed by a rotation of the region enclosed by the curve $y=2^{x}-1$ and two lines $x=0,\ y=1$ around the $y$ axis.
1982 Miklós Schweitzer, 6
For every positive $ \alpha$, natural number $ n$, and at most $ \alpha n$ points $ x_i$, construct a trigonometric polynomial $ P(x)$ of degree at most $ n$ for which \[ P(x_i) \leq 1, \; \int_0^{2 \pi} P(x)dx=0,\ \; \textrm{and}\ \; \max P(x) > cn\ ,\] where the constant $ c$ depends only on $ \alpha$.
[i]G. Halasz[/i]
2003 District Olympiad, 4
Consider the continuous functions $ f:[0,\infty )\longrightarrow\mathbb{R}, g: [0,1]\longrightarrow\mathbb{R} , $ where $
f $ has a finite limit at $ \infty . $ Show that:
$$ \lim_{n \to \infty} \frac{1}{n}\int_0^n f(x) g\left( \frac{x}{n} \right) dx =\int_0^1 g(x)dx\cdot\lim_{x\to\infty} f(x) . $$
2013 Today's Calculation Of Integral, 886
Find the functions $f(x),\ g(x)$ such that
$f(x)=e^{x}\sin x+\int_0^{\pi} ug(u)\ du$
$g(x)=e^{x}\cos x+\int_0^{\pi} uf(u)\ du$
2005 Today's Calculation Of Integral, 15
Calculate the following indefinite integrals.
[1] $\int \frac{(x^2-1)^2}{x^4}dx$
[2] $\int \frac{e^{3x}}{\sqrt{e^x+1}}dx$
[3] $\int \sin 2x\cos 3xdx$
[4] $\int x\ln (x+1)dx$
[5] $\int \frac{x}{(x+3)^2}dx$
2024 CMIMC Integration Bee, 5
\[\int_1^e \frac{2x^2+1}{x^3+x\log(x)}\mathrm dx\]
[i]Proposed by Connor Gordon[/i]
2014 IPhOO, 1
A ring is of the shape of a hoola-hoop of negligible thickness. A ring of radius $R$ carries a current $I$. Prove that the magnetic field at a given point in the plane of the ring at a distance $a$ from the center, due to the magnetic field of the ring, is \[ B = \dfrac {\mu_0}{2\pi} \cdot IR \cdot \displaystyle\int_{0}^{\pi} \dfrac {R - a \cos \theta}{\sqrt{\left( a^2 + R^2 - 2aR \cos \theta \right)^3}} \, \mathrm{d}\theta. \]
[i]Problem proposed by Ahaan Rungta[/i]
2010 Today's Calculation Of Integral, 531
(1) Let $ f(x)$ be a continuous function defined on $ [a,\ b]$, it is known that there exists some $ c$ such that
\[ \int_a^b f(x)\ dx \equal{} (b \minus{} a)f(c)\ (a < c < b)\]
Explain the fact by using graph. Note that you don't need to prove the statement.
(2) Let $ f(x) \equal{} a_0 \plus{} a_1x \plus{} a_2x^2 \plus{} \cdots\cdots \plus{} a_nx^n$,
Prove that there exists $ \theta$ such that
\[ f(\sin \theta) \equal{} a_0 \plus{} \frac {a_1}{2} \plus{} \frac {a_3}{3} \plus{} \cdots\cdots \plus{} \frac {a_n}{n \plus{} 1},\ 0 < \theta < \frac {\pi}{2}.\]
1990 Putnam, B1
Find all real-valued continuously differentiable functions $f$ on the real line such that for all $x$, \[ \left( f(x) \right)^2 = \displaystyle\int_0^x \left[ \left( f(t) \right)^2 + \left( f'(t) \right)^2 \right] \, \mathrm{d}t + 1990. \]
1998 Irish Math Olympiad, 1
Prove that if $ x \not\equal{} 0$ is a real number, then: $ x^8\minus{}x^5\minus{}\frac{1}{x}\plus{}\frac{1}{x^4} \ge 0$.
2005 Today's Calculation Of Integral, 28
Evaluate
\[\int_0^{\frac{\pi}{4}} \frac{x\cos 5x}{\cos x}dx\]
2003 IMC, 2
Evaluate $\lim_{x\rightarrow 0^+}\int^{2x}_x\frac{\sin^m(t)}{t^n}dt$. ($m,n\in\mathbb{N}$)
Today's calculation of integrals, 852
Let $f(x)$ be a polynomial. Prove that if $\int_0^1 f(x)g_n(x)\ dx=0\ (n=0,\ 1,\ 2,\ \cdots)$, then all coefficients of $f(x)$ are 0 for each case as follows.
(1) $g_n(x)=(1+x)^n$
(2) $g_n(x)=\sin n\pi x$
(3) $g_n(x)=e^{nx}$
2009 Today's Calculation Of Integral, 420
Let $ K$ be the figure bounded by the curve $ y\equal{}e^x$ and 3 lines $ x\equal{}0,\ x\equal{}1,\ y\equal{}0$ in the $ xy$ plane.
(1) Find the volume of the solid formed by revolving $ K$ about the $ x$ axis.
(2) Find the volume of the solid formed by revolving $ K$ about the $ y$ axis.
1981 Spain Mathematical Olympiad, 5
Given a nonzero natural number $n$, let $f_n$ be the function of the closed interval $[0, 1]$ in $R$ defined like this:
$$f_n(x) = \begin{cases}n^2x, \,\,\, if \,\,\, 0 \le x < 1/n\\ 3/n, \,\,\,if \,\,\,1/n \le x \le 1 \end{cases}$$
a) Represent the function graphically.
b) Calculate $A_n =\int_0^1 f_n(x) dx$.
c) Find, if it exists, $\lim_{n\to \infty} A_n$ .
2024 CMIMC Integration Bee, 7
\[\int_1^2 \frac{\sqrt{1-\frac 1x}}{x-1}\mathrm dx\]
[i]Proposed by Connor Gordon[/i]
Today's calculation of integrals, 873
Let $a,\ b$ be positive real numbers. Consider the circle $C_1: (x-a)^2+y^2=a^2$ and the ellipse $C_2: x^2+\frac{y^2}{b^2}=1.$
(1) Find the condition for which $C_1$ is inscribed in $C_2$.
(2) Suppose $b=\frac{1}{\sqrt{3}}$ and $C_1$ is inscribed in $C_2$. Find the coordinate $(p,\ q)$ of the point of tangency in the first quadrant for $C_1$ and $C_2$.
(3) Under the condition in (1), find the area of the part enclosed by $C_1,\ C_2$ for $x\geq p$.
60 point