This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1687

1999 IberoAmerican, 1

Let $B$ be an integer greater than 10 such that everyone of its digits belongs to the set $\{1,3,7,9\}$. Show that $B$ has a [b]prime divisor[/b] greater than or equal to 11.

2012 India National Olympiad, 4

Let $ABC$ be a triangle. An interior point $P$ of $ABC$ is said to be [i]good [/i]if we can find exactly $27$ rays emanating from $P$ intersecting the sides of the triangle $ABC$ such that the triangle is divided by these rays into $27$ [i]smaller triangles of equal area.[/i] Determine the number of good points for a given triangle $ABC$.

1993 AMC 12/AHSME, 19

How many ordered pairs $(m,n)$ of positive integers are solutions to $\frac{4}{m}+\frac{2}{n}=1$? $ \textbf{(A)}\ 1 \qquad\textbf{(B)}\ 2 \qquad\textbf{(C)}\ 3 \qquad\textbf{(D)}\ 4 \qquad\textbf{(E)}\ \text{more than}\ 4 $

2008 Harvard-MIT Mathematics Tournament, 9

([b]7[/b]) Evaluate the limit $ \lim_{n\rightarrow\infty} n^{\minus{}\frac{1}{2}\left(1\plus{}\frac{1}{n}\right)} \left(1^1\cdot2^2\cdot\cdots\cdot n^n\right)^{\frac{1}{n^2}}$.

2010 Today's Calculation Of Integral, 641

Evaluate \[\int_{e^e}^{e^{e^{e}}}\left\{\ln (\ln (\ln x))+\frac{1}{(\ln x)\ln (\ln x)}\right\}dx.\] Own

2007 IberoAmerican Olympiad For University Students, 3

Let $f:\mathbb{R}\to\mathbb{R}^+$ be a continuous and periodic function. Prove that for all $\alpha\in\mathbb{R}$ the following inequality holds: $\int_0^T\frac{f(x)}{f(x+\alpha)}dx\ge T$, where $T$ is the period of $f(x)$.

2011 Today's Calculation Of Integral, 763

Evaluate $\int_1^4 \frac{x-2}{(x^2+4)\sqrt{x}}dx.$

2009 Today's Calculation Of Integral, 511

Suppose that $ f(x),\ g(x)$ are differential fuctions and their derivatives are continuous. Find $ f(x),\ g(x)$ such that $ f(x)\equal{}\frac 12\minus{}\int_0^x \{f'(t)\plus{}g(t)\}\ dt\ \ g(x)\equal{}\sin x\minus{}\int_0^{\pi} \{f(t)\minus{}g'(t)\}\ dt$.

2008 Harvard-MIT Mathematics Tournament, 7

Compute $ \sum_{n \equal{} 1}^\infty\sum_{k \equal{} 1}^{n \minus{} 1}\frac {k}{2^{n \plus{} k}}$.

2011 Laurențiu Duican, 2

$ \lim_{n\to\infty } \int_{\pi }^{2\pi } \frac{|\sin (nx) +\cos (nx)|}{ x} dx ? $ [i]Gabriela Boeriu[/i]

1998 Vietnam Team Selection Test, 1

Find all integer polynomials $P(x)$, the highest coefficent is 1 such that: there exist infinitely irrational numbers $a$ such that $p(a)$ is a positive integer.

1994 Vietnam Team Selection Test, 2

Consider the equation \[x^2 + y^2 + z^2 + t^2 - N \cdot x \cdot y \cdot z \cdot t - N = 0\] where $N$ is a given positive integer. a) Prove that for an infinite number of values of $N$, this equation has positive integral solutions (each such solution consists of four positive integers $x, y, z, t$), b) Let $N = 4 \cdot k \cdot (8 \cdot m + 7)$ where $k,m$ are no-negative integers. Prove that the considered equation has no positive integral solutions.

2000 India Regional Mathematical Olympiad, 3

Suppose $\{ x_n \}_{n\geq 1}$ is a sequence of positive real numbers such that $x_1 \geq x_2 \geq x_3 \ldots \geq x_n \ldots$, and for all $n$ \[ \frac{x_1}{1} + \frac{x_4}{2} + \frac{x_9}{3} + \ldots + \frac{x_{n^2}}{n} \leq 1 . \] Show that for all $k$ \[ \frac{x_1}{1} + \frac{x_2}{2} +\ldots + \frac{x_k}{k} \leq 3. \]

Today's calculation of integrals, 862

Draw a tangent with positive slope to a parabola $y=x^2+1$. Find the $x$-coordinate such that the area of the figure bounded by the parabola, the tangent and the coordinate axisis is $\frac{11}{3}.$

2022 CMIMC Integration Bee, 8

\[\int_{-\infty}^{0} \frac{1}{e^{-x}+2e^{x}+e^{3x}}\,\mathrm dx\] [i]Proposed by Connor Gordon[/i]

2004 IMC, 6

For every complex number $z$ different from 0 and 1 we define the following function \[ f(z) := \sum \frac 1 { \log^4 z } \] where the sum is over all branches of the complex logarithm. a) Prove that there are two polynomials $P$ and $Q$ such that $f(z) = \displaystyle \frac {P(z)}{Q(z)} $ for all $z\in\mathbb{C}-\{0,1\}$. b) Prove that for all $z\in \mathbb{C}-\{0,1\}$ we have \[ f(z) = \frac { z^3+4z^2+z}{6(z-1)^4}. \]

2009 Today's Calculation Of Integral, 453

Find the minimum value of $ \int_0^{\frac{\pi}{2}} |x\sin t\minus{}\cos t|\ dt\ (x>0).$

2007 Today's Calculation Of Integral, 216

Let $ a_{n}$ is a positive number such that $ \int_{0}^{a_{n}}\frac{e^{x}\minus{}1}{1\plus{}e^{x}}\ dx \equal{}\ln n$. Find $ \lim_{n\to\infty}(a_{n}\minus{}\ln n)$.

Today's calculation of integrals, 874

Given a parabola $C : y=1-x^2$ in $xy$-palne with the origin $O$. Take two points $P(p,\ 1-p^2),\ Q(q,\ 1-q^2)\ (p<q)$ on $C$. (1) Express the area $S$ of the part enclosed by two segments $OP,\ OQ$ and the parabalola $C$ in terms of $p,\ q$. (2) If $q=p+1$, then find the minimum value of $S$. (3) If $pq=-1$, then find the minimum value of $S$.

2009 Princeton University Math Competition, 2

It is known that a certain mechanical balance can measure any object of integer mass anywhere between 1 and 2009 (both included). This balance has $k$ weights of integral values. What is the minimum $k$ for which there exist weights that satisfy this condition?

2011 Today's Calculation Of Integral, 762

Define a function $f_n(x)\ (n=0,\ 1,\ 2,\ \cdots)$ by \[f_0(x)=\sin x,\ f_{n+1}(x)=\int_0^{\frac{\pi}{2}} f_n\prime (t)\sin (x+t)dt.\] (1) Let $f_n(x)=a_n\sin x+b_n\cos x.$ Express $a_{n+1},\ b_{n+1}$ in terms of $a_n,\ b_n.$ (2) Find $\sum_{n=0}^{\infty} f_n\left(\frac{\pi}{4}\right).$

2009 Today's Calculation Of Integral, 399

Evaluate $ \int_0^{\sqrt{2}\minus{}1} \frac{1\plus{}x^2}{1\minus{}x^2}\ln \left(\frac{1\plus{}x}{1\minus{}x}\right)\ dx$.

2000 Romania National Olympiad, 1

Let $ a\in (1,\infty) $ and a countinuous function $ f:[0,\infty)\longrightarrow\mathbb{R} $ having the property: $$ \lim_{x\to \infty} xf(x)\in\mathbb{R} . $$ [b]a)[/b] Show that the integral $ \int_1^{\infty} \frac{f(x)}{x}dx $ and the limit $ \lim_{t\to\infty} t\int_{1}^a f\left( x^t \right) dx $ both exist, are finite and equal. [b]b)[/b] Calculate $ \lim_{t\to \infty} t\int_1^a \frac{dx}{1+x^t} . $

1982 Dutch Mathematical Olympiad, 4

Determine $ \gcd (n^2\plus{}2,n^3\plus{}1)$ for $ n\equal{}9^{753}$.

2013 Korea National Olympiad, 3

Prove that there exist monic polynomial $f(x) $ with degree of 6 and having integer coefficients such that (1) For all integer $m$, $f(m) \ne 0$. (2) For all positive odd integer $n$, there exist positive integer $k$ such that $f(k)$ is divided by $n$.