This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1687

1951 Miklós Schweitzer, 5

In a lake there are several sorts of fish, in the following distribution: $ 18\%$ catfish, $ 2\%$ sturgeon and $ 80\%$ other. Of a catch of ten fishes, let $ x$ denote the number of the catfish and $ y$ that of the sturgeons. Find the expectation of $ \frac {x}{y \plus{} 1}$

2012 Today's Calculation Of Integral, 831

Let $n$ be a positive integer. Answer the following questions. (1) Find the maximum value of $f_n(x)=x^{n}e^{-x}$ for $x\geq 0$. (2) Show that $\lim_{x\to\infty} f_n(x)=0$. (3) Let $I_n=\int_0^x f_n(t)\ dt$. Find $\lim_{x\to\infty} I_n(x)$.

2010 Today's Calculation Of Integral, 585

Evaluate $ \int_0^{\ln 2} (x\minus{}\ln 2)e^{\minus{}2\ln (1\plus{}e^x)\plus{}x\plus{}\ln 2}dx$.

2008 Harvard-MIT Mathematics Tournament, 3

([b]4[/b]) Find all $ y > 1$ satisfying $ \int^y_1x\ln x\ dx \equal{} \frac {1}{4}$.

2011 India National Olympiad, 3

Let $P(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_0$ and $Q(x)=b_nx^n+b_{n-1}x^{n-1}+\cdots+b_0$ be two polynomials with integral coefficients such that $a_n-b_n$ is a prime and $a_nb_0-a_0b_n\neq 0,$ and $a_{n-1}=b_{n-1}.$ Suppose that there exists a rational number $r$ such that $P(r)=Q(r)=0.$ Prove that $r\in\mathbb Z.$

2005 Today's Calculation Of Integral, 88

A function $f(x)$ satisfies $\begin{cases} f(x)=-f''(x)-(4x-2)f'(x)\\ f(0)=a,\ f(1)=b \end{cases}$ Evaluate $\int_0^1 f(x)(x^2-x)\ dx.$

1989 India National Olympiad, 1

Prove that the Polynomial $ f(x) \equal{} x^{4} \plus{} 26x^{3} \plus{} 56x^{2} \plus{} 78x \plus{} 1989$ can't be expressed as a product $ f(x) \equal{} p(x)q(x)$ , where $ p(x)$ and $ q(x)$ are both polynomial with integral coefficients and with degree at least $ 1$.

2009 Today's Calculation Of Integral, 441

Evaluate $ \int_1^e \frac{(x^2\ln x\minus{}1)e^x}{x}\ dx.$

2007 Romania National Olympiad, 1

Let $\mathcal{F}$ be the set of functions $f: [0,1]\to\mathbb{R}$ that are differentiable, with continuous derivative, and $f(0)=0$, $f(1)=1$. Find the minimum of $\int_{0}^{1}\sqrt{1+x^{2}}\cdot \big(f'(x)\big)^{2}\ dx$ (where $f\in\mathcal{F}$) and find all functions $f\in\mathcal{F}$ for which this minimum is attained. [hide="Comment"] In the contest, this was the b) point of the problem. The a) point was simply ``Prove the Cauchy inequality in integral form''. [/hide]

2007 Today's Calculation Of Integral, 206

Calculate $\int \frac{x^{3}}{(x-1)^{3}(x-2)}\ dx$

Today's calculation of integrals, 854

Given a figure $F: x^2+\frac{y^2}{3}=1$ on the coordinate plane. Denote by $S_n$ the area of the common part of the $n+1' s$ figures formed by rotating $F$ of $\frac{k}{2n}\pi\ (k=0,\ 1,\ 2,\ \cdots,\ n)$ radians counterclockwise about the origin. Find $\lim_{n\to\infty} S_n$.

2009 Today's Calculation Of Integral, 514

Prove the following inequalities: (1) $ x\minus{}\sin x\leq \tan x\minus{}x\ \ \left(0\leq x<\frac{\pi}{2}\right)$ (2) $ \int_0^x \cos (\tan t\minus{}t)\ dt\leq \sin (\sin x)\plus{}\frac 12 \left(x\minus{}\frac{\sin 2x}{2}\right)\ \left(0\leq x\leq \frac{\pi}{3}\right)$

1998 Romania National Olympiad, 1

Suppose that $a,b\in\mathbb{R}^+$ which $a+b<1$ and $f:[0,+\infty) \rightarrow [0,+\infty) $ be the increasing function s.t. $\forall x\geq 0 ,\int _0^x f(t)dt=\int _0^{ax} f(t)dt+\int _0^{bx} f(t)dt$. Prove that $\forall x\geq 0 , f(x)=0$

2010 Today's Calculation Of Integral, 564

In the coordinate plane with $ O(0,\ 0)$, consider the function $ C: \ y \equal{} \frac 12x \plus{} \sqrt {\frac 14x^2 \plus{} 2}$ and two distinct points $ P_1(x_1,\ y_1),\ P_2(x_2,\ y_2)$ on $ C$. (1) Let $ H_i\ (i \equal{} 1,\ 2)$ be the intersection points of the line passing through $ P_i\ (i \equal{} 1,\ 2)$, parallel to $ x$ axis and the line $ y \equal{} x$. Show that the area of $ \triangle{OP_1H_1}$ and $ \triangle{OP_2H_2}$ are equal. (2) Let $ x_1 < x_2$. Express the area of the figure bounded by the part of $ x_1\leq x\leq x_2$ for $ C$ and line segments $ P_1O,\ P_2O$ in terms of $ y_1,\ y_2$.

2009 Today's Calculation Of Integral, 504

Let $ a,\ b$ are positive constants. Determin the value of a positive number $ m$ such that the areas of four parts of the region bounded by two parabolas $ y\equal{}ax^2\minus{}b,\ y\equal{}\minus{}ax^2\plus{}b$ and the line $ y\equal{}mx$ have equal area.

2012 Today's Calculation Of Integral, 844

Let $\alpha$ be a solution satisfying the equation $|x|=e^{-x}.$ Let $I_n=\int_0^{\alpha} (xe^{-nx}+\alpha x^{n-1})dx\ (n=1,\ 2,\ \cdots).$ Find $\lim_{n\to\infty} n^2I_n.$

2011 Today's Calculation Of Integral, 729

Evaluate $\int_1^e \frac{\ln x-1}{x^2-(\ln x)^2}dx.$

2012 Today's Calculation Of Integral, 842

Let $S_n=\int_0^{\pi} \sin ^ n x\ dx\ (n=1,\ 2,\ ,\ \cdots).$ Find $\lim_{n\to\infty} nS_nS_{n+1}.$

2011 China Second Round Olympiad, 10

A sequence $a_n$ satisfies $a_1 =2t-3$ ($t \ne 1,-1$), and $a_{n+1}=\dfrac{(2t^{n+1}-3)a_n+2(t-1)t^n-1}{a_n+2t^n-1}$. [list] [b][i]i)[/i][/b] Find $a_n$, [b][i]ii)[/i][/b] If $t>0$, compare $a_{n+1}$ with $a_n$.[/list]

2011 Today's Calculation Of Integral, 761

Find $\lim_{n\to\infty} \frac{1}{n}\sqrt[n]{\frac{(4n)!}{(3n)!}}.$

2013 SEEMOUS, Problem 1

Find all continuous functions $f:[1,8]\to\mathbb R$, such that $$\int^2_1f(t^3)^2dt+2\int^2_1f(t^3)dt=\frac23\int^8_1f(t)dt-\int^2_1(t^2-1)^2dt.$$

2016 District Olympiad, 2

Let $ f:\mathbb{R}\longrightarrow (0,\infty ) $ be a continuous and periodic function having a period of $ 2, $ and such that the integral $ \int_0^2 \frac{f(1+x)}{f(x)} dx $ exists. Show that $$ \int_0^2 \frac{f(1+x)}{f(x)} dx\ge 2, $$ with equality if and only if $ 1 $ is also a period of $ f. $

2015 District Olympiad, 2

[b]a)[/b] Calculate $ \int_{0}^1 x\sin\left( \pi x^2\right) dx. $ [b]b)[/b] Calculate $ \lim_{n\to\infty} \frac{1}{n}\sum_{k=0}^{n-1} k\int_{\frac{k}{n}}^{\frac{k+1}{n}} \sin\left(\pi x^2\right) dx. $ [i]Florin Stănescu[/i]

2013 Putnam, 5

For $m\ge 3,$ a list of $\binom m3$ real numbers $a_{ijk}$ $(1\le i<j<k\le m)$ is said to be [i]area definite[/i] for $\mathbb{R}^n$ if the inequality \[\sum_{1\le i<j<k\le m}a_{ijk}\cdot\text{Area}(\triangle A_iA_jA_k)\ge0\] holds for every choice of $m$ points $A_1,\dots,A_m$ in $\mathbb{R}^n.$ For example, the list of four numbers $a_{123}=a_{124}=a_{134}=1, a_{234}=-1$ is area definite for $\mathbb{R}^2.$ Prove that if a list of $\binom m3$ numbers is area definite for $\mathbb{R}^2,$ then it is area definite for $\mathbb{R}^3.$

2011 Today's Calculation Of Integral, 718

Find $\sum_{n=1}^{\infty} \frac{1}{2^n}\int_{-1}^1 (1-x)^2(1+x)^n dx\ (n\geq 1).$