This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1687

2009 Today's Calculation Of Integral, 398

In $ xyz$ space, find the volume of the solid expressed by the sytem of inequality: $ 0\leqq x\leqq 1,\ 0\leqq y\leqq 1,\ 0\leqq z\leqq 1$ $ x^2 \plus{} y^2 \plus{} z^2 \minus{} 2xy \minus{} 1\geqq 0$

2001 Romania National Olympiad, 3

Let $f:[-1,1]\rightarrow\mathbb{R}$ be a continuous function. Show that: a) if $\int_0^1 f(\sin (x+\alpha ))\, dx=0$, for every $\alpha\in\mathbb{R}$, then $f(x)=0,\ \forall x\in [-1,1]$. b) if $\int_0^1 f(\sin (nx))\, dx=0$, for every $n\in\mathbb{Z}$, then $f(x)=0,\ \forall x\in [-1,1]$.

1956 AMC 12/AHSME, 41

The equation $ 3y^2 \plus{} y \plus{} 4 \equal{} 2(6x^2 \plus{} y \plus{} 2)$ where $ y \equal{} 2x$ is satisfied by: $ \textbf{(A)}\ \text{no value of }x \qquad\textbf{(B)}\ \text{all values of }x \qquad\textbf{(C)}\ x \equal{} 0\text{ only}$ $ \textbf{(D)}\ \text{all integral values of }x\text{ only} \qquad\textbf{(E)}\ \text{all rational values of }x\text{ only}$

2009 Today's Calculation Of Integral, 407

Evaluate $ \int_0^1 (x \plus{} 3)\sqrt {xe^x}\ dx$.

2005 Today's Calculation Of Integral, 49

For $x\geq 0$, Prove that $\int_0^x (t-t^2)\sin ^{2002} t \,dt<\frac{1}{2004\cdot 2005}$

2012 Today's Calculation Of Integral, 813

Let $a$ be a real number. Find the minimum value of $\int_0^1 |ax-x^3|dx$. How many solutions (including University Mathematics )are there for the problem? Any advice would be appreciated.

2007 Croatia Team Selection Test, 1

Find integral solutions to the equation \[(m^{2}-n^{2})^{2}=16n+1.\]

2011 Today's Calculation Of Integral, 765

Define two functions $g(x),\ f(x)\ (x\geq 0)$ by $g(x)=\int_0^x e^{-t^2}dt,\ f(x)=\int_0^1 \frac{e^{-(1+s^2)x}}{1+s^2}ds.$ Now we know that $f'(x)=-\int_0^1 e^{-(1+s^2)x}ds.$ (1) Find $f(0).$ (2) Show that $f(x)\leq \frac{\pi}{4}e^{-x}\ (x\geq 0).$ (3) Let $h(x)=\{g(\sqrt{x})\}^2$. Show that $f'(x)=-h'(x).$ (4) Find $\lim_{x\rightarrow +\infty} g(x)$ Please solve the problem without using Double Integral or Jacobian for those Japanese High School Students who don't study them.

2010 Today's Calculation Of Integral, 651

Find \[\lim_{n\to\infty}\int _0^{2n} e^{-2x}\left|x-2\lfloor\frac{x+1}{2}\rfloor\right|\ dx.\] [i]1985 Tohoku University entrance exam/Mathematics, Physics, Chemistry, Biology[/i]

2010 Today's Calculation Of Integral, 629

Evaluate $\int_0^{\infty} \frac{1}{e^{x}(1+e^{4x})}dx.$

2011 Today's Calculation Of Integral, 698

For a positive integer $n$, let denote $C_n$ the figure formed by the inside and perimeter of the circle with center the origin, radius $n$ on the $x$-$y$ plane. Denote by $N(n)$ the number of a unit square such that all of unit square, whose $x,\ y$ coordinates of 4 vertices are integers, and the vertices are included in $C_n$. Prove that $\lim_{n\to\infty} \frac{N(n)}{n^2}=\pi$.

1981 Miklós Schweitzer, 10

Let $ P$ be a probability distribution defined on the Borel sets of the real line. Suppose that $ P$ is symmetric with respect to the origin, absolutely continuous with respect to the Lebesgue measure, and its density function $ p$ is zero outside the interval $ [\minus{}1,1]$ and inside this interval it is between the positive numbers $ c$ and $ d$ ($ c < d$). Prove that there is no distribution whose convolution square equals $ P$. [i]T. F. Mori, G. J. Szekely[/i]

2005 Today's Calculation Of Integral, 27

Let $f(x)=t\sin x+(1-t)\cos x\ (0\leqq t\leqq 1)$. Find the maximum and minimum value of the following $P(t)$. \[P(t)=\left\{\int_0^{\frac{\pi}{2}} e^x f(x) dx \right\}\left\{\int_0^{\frac{\pi}{2}} e^{-x} f(x)dx \right\}\]

2014 Indonesia MO, 2

For some positive integers $m,n$, the system $x+y^2 = m$ and $x^2+y = n$ has exactly one integral solution $(x,y)$. Determine all possible values of $m-n$.

2010 Today's Calculation Of Integral, 662

In $xyz$ space, let $A$ be the solid generated by a rotation of the figure, enclosed by the curve $y=2-2x^2$ and the $x$-axis about the $y$-axis. (1) When the solid is cut by the plane $x=a\ (|a|\leq 1)$, find the inequality which expresses the figure of the cross-section. (2) Denote by $L$ the distance between the point $(a,\ 0,\ 0)$ and the point on the perimeter of the cross-section found in (1), find the maximum value of $L$. (3) Find the volume of the solid by a rotation of the solid $A$ about the $x$-axis. [i]1987 Sophia University entrance exam/Science and Technology[/i]

2009 Today's Calculation Of Integral, 423

Let $ f(x)\equal{}x^2\plus{}3$ and $ y\equal{}g(x)$ be the equation of the line with the slope $ a$, which pass through the point $ (0,\ f(0))$ . Find the maximum and minimum values of $ I(a)\equal{}3\int_{\minus{}1}^1 |f(x)\minus{}g(x)|\ dx$.

2011 Today's Calculation Of Integral, 749

Let $m$ be a positive integer. A tangent line at the point $P$ on the parabola $C_1 : y=x^2+m^2$ intersects with the parabola $C_2 : y=x^2$ at the points $A,\ B$. For the point $Q$ between $A$ and $B$ on $C_2$, denote by $S$ the sum of the areas of the region bounded by the line $AQ$,$C_2$ and the region bounded by the line $QB$, $C_2$. When $Q$ move between $A$ and $B$ on $C_2$, prove that the minimum value of $S$ doesn't depend on how we would take $P$, then find the value in terms of $m$.

2009 Today's Calculation Of Integral, 403

Evaluate $ \int_0^1 \frac{2e^{2x}\plus{}xe^x\plus{}3e^x\plus{}1}{(e^x\plus{}1)^2(e^x\plus{}x\plus{}1)^2}\ dx$.

2012 Gulf Math Olympiad, 4

Fawzi cuts a spherical cheese completely into (at least three) slices of equal thickness. He starts at one end, making successive parallel cuts, working through the cheese until the slicing is complete. The discs exposed by the first two cuts have integral areas. [list](i) Prove that all the discs that he cuts have integral areas. (ii) Prove that the original sphere had integral surface area if, and only if, the area of the second disc that he exposes is even.[/list]

2002 CentroAmerican, 6

A path from $ (0,0)$ to $ (n,n)$ on the lattice is made up of unit moves upward or rightward. It is balanced if the sum of the x-coordinates of its $ 2n\plus{}1$ vertices equals the sum of their y-coordinates. Show that a balanced path divides the square with vertices $ (0,0)$, $ (n,0)$, $ (n,n)$, $ (0,n)$ into two parts with equal area.

PEN H Problems, 54

Show that the number of integral-sided right triangles whose ratio of area to semi-perimeter is $p^{m}$, where $p$ is a prime and $m$ is an integer, is $m+1$ if $p=2$ and $2m+1$ if $p \neq 2$.

1978 Putnam, A3

Find the value of $ k\ (0<k<5)$ such that $ \int_0^{\infty} \frac{x^k}{2\plus{}4x\plus{}3x^2\plus{}5x^3\plus{}3x^4\plus{}4x^5\plus{}2x^6}\ dx$ is minimal.

2012 District Olympiad, 1

Let $a,b,c$ three positive distinct real numbers. Evaluate: \[\lim_{t\to \infty} \int_0^t \frac{1}{(x^2+a^2)(x^2+b^2)(x^2+c^2)}dx\]

2010 Today's Calculation Of Integral, 541

Find the functions $ f(x),\ g(x)$ satisfying the following equations. (1) $ f'(x) \equal{} 2f(x) \plus{} 10,\ f(0) \equal{} 0$ (2) $ \int_0^x u^3g(u)du \equal{} x^4 \plus{} g(x)$

1999 Harvard-MIT Mathematics Tournament, 3

Find \[\int_{-4\pi\sqrt{2}}^{4\pi\sqrt{2}}\left(\dfrac{\sin x}{1+x^4}+1\right)dx.\]