This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1687

2013 District Olympiad, 1

Calculate: $\underset{n\to \infty }{\mathop{\lim }}\,\int_{0}^{1}{{{e}^{{{x}^{n}}}}dx}$

2011 Today's Calculation Of Integral, 678

Evaluate \[\int_0^{\pi} \left(1+\sum_{k=1}^n k\cos kx\right)^2dx\ \ (n=1,\ 2,\ \cdots).\] [i]2011 Doshisya University entrance exam/Life Medical Sciences[/i]

2004 German National Olympiad, 6

Is there a circle which passes through five points with integer co-ordinates?

1991 Arnold's Trivium, 51

Calculate the integral \[\int_{-\infty}^{+\infty}e^{ikx}\frac{1-e^x}{1+e^x}dx\]

2009 Today's Calculation Of Integral, 497

Consider a parameterized curve $ C: x \equal{} e^{ \minus{} t}\cos t,\ y \equal{} e^{ \minus{} t}\sin t\ \left(0\leq t\leq \frac {\pi}{2}\right).$ (1) Find the length $ L$ of $ C$. (2) Find the area $ S$ of the region bounded by $ C$, the $ x$ axis and $ y$ axis. You may not use the formula $ \boxed{\int_a^b \frac {1}{2}r(\theta)^2d\theta }$ here.

2005 District Olympiad, 4

Let $(A,+,\cdot)$ be a finite unit ring, with $n\geq 3$ elements in which there exist [b]exactly[/b] $\dfrac {n+1}2$ perfect squares (e.g. a number $b\in A$ is called a perfect square if and only if there exists an $a\in A$ such that $b=a^2$). Prove that a) $1+1$ is invertible; b) $(A,+,\cdot)$ is a field. [i]Proposed by Marian Andronache[/i]

2013 Today's Calculation Of Integral, 884

Prove that : \[\pi (e-1)<\int_0^{\pi} e^{|\cos 4x|}dx<2(e^{\frac{\pi}{2}}-1)\]

2024 CMIMC Integration Bee, 10

\[\int_{-1}^1 \sqrt[3]{x}\log(1+e^x)\mathrm dx\] [i]Proposed by Connor Gordon[/i]

Today's calculation of integrals, 851

Let $T$ be a period of a function $f(x)=|\cos x|\sin x\ (-\infty,\ \infty).$ Find $\lim_{n\to\infty} \int_0^{nT} e^{-x}f(x)\ dx.$

2011 Today's Calculation Of Integral, 700

Evaluate \[\int_0^{\pi} \frac{x^2\cos ^ 2 x-x\sin x-\cos x-1}{(1+x\sin x)^2}dx\]

2021 CMIMC Integration Bee, 15

$$\int_{-\infty}^\infty \frac{\sin(\pi x)}{x(1+x^2)}\,dx$$ [i]Proposed by Vlad Oleksenko[/i]

2010 Today's Calculation Of Integral, 592

Prove the following inequality. \[ \frac{\sqrt{2}}{4}\minus{}\frac 12\minus{}\frac 14\ln 2<\int_0^{\frac{\pi}{4}} \ln \cos x\ dx<\frac 38\pi\plus{}\frac 12\minus{}\ln \ (3\plus{}2\sqrt{2})\]

PEN G Problems, 8

Show that $e=\sum^{\infty}_{n=0} \frac{1}{n!}$ is irrational.

2010 Purple Comet Problems, 12

A good approximation of $\pi$ is $3.14.$ Find the least positive integer $d$ such that if the area of a circle with diameter $d$ is calculated using the approximation $3.14,$ the error will exceed $1.$

2005 Today's Calculation Of Integral, 17

Calculate the following indefinite integrals. [1] $\int \frac{dx}{e^x-e^{-x}}$ [2] $\int e^{-ax}\cos 2x dx\ (a\neq 0)$ [3] $\int (3^x-2)^2 dx$ [4] $\int \frac{x^4+2x^3+3x^2+1}{(x+2)^5}dx$ [5] $\int \frac{dx}{1-\cos x}dx$

1962 AMC 12/AHSME, 9

When $ x^9\minus{}x$ is factored as completely as possible into polynomials and monomials with integral coefficients, the number of factors is: $ \textbf{(A)}\ \text{more than 5} \qquad \textbf{(B)}\ 5 \qquad \textbf{(C)}\ 4 \qquad \textbf{(D)}\ 3 \qquad \textbf{(E)}\ 2$

1968 Putnam, A1

Prove $ \ \ \ \frac{22}{7}\minus{}\pi \equal{}\int_0^1 \frac{x^4(1\minus{}x)^4}{1\plus{}x^2}\ dx$.

1995 Putnam, 2

An ellipse, whose semi-axes have length $a$ and $b$, rolls without slipping on the curve $y=c\sin{\left(\frac{x}{a}\right)}$. How are $a,b,c$ related, given that the ellipse completes one revolution when it traverses one period of the curve?

2005 IMC, 3

3) $f$ cont diff, $R\rightarrow ]0,+\infty[$, prove $|\int_{0}^{1}f^{3}-{f(0)}^{2}\int_{0}^{1}f| \leq \max_{[0,1]} |f'|(\int_{0}^{1}f)^{2}$

2009 Today's Calculation Of Integral, 521

Let $ t$ be a positive number. Draw two tangent lines from the point $ (t, \minus{} 1)$ to the parabpla $ y \equal{} x^2$. Denote $ S(t)$ the area bounded by the tangents line and the parabola. Find the minimum value of $ \frac {S(t)}{\sqrt {t}}$.

2005 Vietnam Team Selection Test, 3

Find all functions $f: \mathbb{Z} \mapsto \mathbb{Z}$ satisfying the condition: $f(x^3 +y^3 +z^3 )=f(x)^3+f(y)^3+f(z)^3.$

2011 Poland - Second Round, 3

There are two given different polynomials $P(x),Q(x)$ with real coefficients such that $P(Q(x))=Q(P(x))$. Prove that $\forall n\in \mathbb{Z_{+}}$ polynomial: \[\underbrace{P(P(\ldots P(P}_{n}(x))\ldots))- \underbrace{Q(Q(\ldots Q(Q}_{n}(x))\ldots))\] is divisible by $P(x)-Q(x)$.

2009 Today's Calculation Of Integral, 477

Suppose that $ P_1(x)\equal{}\frac{d}{dx}(x^2\minus{}1),\ P_2(x)\equal{}\frac{d^2}{dx^2}(x^2\minus{}1)^2,\ P_3(x)\equal{}\frac{d^3}{dx^3}(x^2\minus{}1)^3$. Find all possible values for which $ \int_{\minus{}1}^1 P_k(x)P_l(x)\ dx\ (k\equal{}1,\ 2,\ 3,\ l\equal{}1,\ 2,\ 3)$ can be valued.

2011 Tokyo Instutute Of Technology Entrance Examination, 1

Let $f_n\ (n=1,\ 2,\ \cdots)$ be a linear transformation expressed by a matrix $\left( \begin{array}{cc} 1-n & 1 \\ -n(n+1) & n+2 \end{array} \right)$ on the $xy$ plane. Answer the following questions: (1) Prove that there exists 2 lines passing through the origin $O(0,\ 0)$ such that all points of the lines are mapped to the same lines, then find the equation of the lines. (2) Find the area $S_n$ of the figure enclosed by the lines obtained in (1) and the curve $y=x^2$. (3) Find $\sum_{n=1}^{\infty} \frac{1}{S_n-\frac 16}.$ [i]2011 Tokyo Institute of Technlogy entrance exam, Problem 1[/i]

2010 Tuymaada Olympiad, 1

Baron Münchausen boasts that he knows a remarkable quadratic triniomial with positive coefficients. The trinomial has an integral root; if all of its coefficients are increased by $1$, the resulting trinomial also has an integral root; and if all of its coefficients are also increased by $1$, the new trinomial, too, has an integral root. Can this be true?