This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1687

1996 Romania National Olympiad, 2

Suppose that $ f: [a,b]\rightarrow \mathbb{R} $ be a monotonic function and for every $ x_1,x_2\in [a,b] $ that $ x_1<x_2 $ ,there exist $ c\in (a,b) $ such that $ \int _{x_1}^{x_2}f(x)dx=f(c)(x_1-x_2) $ a) Show that $ f $ be the continuous function on interval $ (a,b) $ b) Suppose that $ f $ is integrable function on interval $ [a,b] $ but $ f $ isn't a monotonic function then ,is it the result of part a) right?

2004 Harvard-MIT Mathematics Tournament, 10

Let $P(x)=x^3-\tfrac{3}{2}x^2+x+\tfrac{1}{4}$. Let $P^{[1]}(x)=P(x)$, and for $n\ge1$, let $P^{n+1}(x)=P^{[n]}(P(x))$. Evaluate: \[ \displaystyle\int_{0}^{1} P^{[2004]} (x) \ \mathrm{d}x. \]

1999 National Olympiad First Round, 6

If $ a,b,c\in {\rm Z}$ and \[ \begin{array}{l} {x\equiv a\, \, \, \pmod{14}} \\ {x\equiv b\, \, \, \pmod {15}} \\ {x\equiv c\, \, \, \pmod {16}} \end{array} \] , the number of integral solutions of the congruence system on the interval $ 0\le x < 2000$ cannot be $\textbf{(A)}\ 0 \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ 3 \qquad\textbf{(E)}\ \text{None}$

2010 Today's Calculation Of Integral, 634

Prove that : \[\int_1^{\sqrt{e}} (\ln x)^n dx=(-1)^{n-1}n!+\sqrt{e}\sum_{m=0}^{n} (-1)^{n-m}\frac{n!}{m!}\left(\frac 12\right)^m\ (n=1,\ 2,\ \cdots)\] [i]2010 Miyazaki University entrance exam/Medicine[/i]

1993 AMC 12/AHSME, 15

For how many values of $n$ will an $n$-sided regular polygon have interior angles with integral degree measures? $ \textbf{(A)}\ 16 \qquad\textbf{(B)}\ 18 \qquad\textbf{(C)}\ 20 \qquad\textbf{(D)}\ 22 \qquad\textbf{(E)}\ 24 $

2023 CMIMC Integration Bee, 4

\[\int_0^\infty x e^{-\sqrt[3]{x}}\,\mathrm dx\] [i]Proposed by Connor Gordon[/i]

2009 Today's Calculation Of Integral, 427

Let $ a$ be a positive real number, in Euclidean space, consider the two disks: $ D_1\equal{}\{(x,\ y,\ z)| x^2\plus{}y^2\leq 1,\ z\equal{}a\}$, $ D_2\equal{}\{(x,\ y,\ z)| x^2\plus{}y^2\leq 1,\ z\equal{}\minus{}a\}$. Let $ D_1$ overlap to $ D_2$ by rotating $ D_1$ about the $ y$ axis by $ 180^\circ$. Note that the rotational direction is supposed to be the direction such that we would lean the postive part of the $ z$ axis to into the direction of the postive part of $ x$ axis. Let denote $ E$ the part in which $ D_1$ passes while the rotation, let denote $ V(a)$ the volume of $ E$ and let $ W(a)$ be the volume of common part of $ E$ and $ \{(x,\ y,\ z)|x\geq 0\}$. (1) Find $ W(a)$. (2) Find $ \lim_{a\rightarrow \infty} V(a)$.

2005 District Olympiad, 2

Let $f:[0,1]\to\mathbb{R}$ be a continuous function and let $\{a_n\}_n$, $\{b_n\}_n$ be sequences of reals such that \[ \lim_{n\to\infty} \int^1_0 | f(x) - a_nx - b_n | dx = 0 . \] Prove that: a) The sequences $\{a_n\}_n$, $\{b_n\}_n$ are convergent; b) The function $f$ is linear.

2016 Romania National Olympiad, 3

Let be a real number $ a, $ and a nondecreasing function $ f:\mathbb{R}\longrightarrow\mathbb{R} . $ Prove that $ f $ is continuous in $ a $ if and only if there exists a sequence $ \left( a_n \right)_{n\ge 1} $ of real positive numbers such that $$ \int_a^{a+a_n} f(x)dx+\int_a^{a-a_n} f(x)dx\le\frac{a_n}{n} , $$ for all natural numbers $ n. $ [i]Dan Marinescu[/i]

2017 Azerbaijan EGMO TST, 4

Find all natural numbers a, b such that $ a^{n}\plus{} b^{n} \equal{} c^{n\plus{}1}$ where c and n are naturals.

1952 Miklós Schweitzer, 10

Let $ n$ be a positive integer. Prove that, for $ 0<x<\frac{\pi}{n\plus{}1}$, $ \sin{x}\minus{}\frac{\sin{2x}}{2}\plus{}\cdots\plus{}(\minus{}1)^{n\plus{}1}\frac{\sin{nx}}{n}\minus{}\frac{x}{2}$ is positive if $ n$ is odd and negative if $ n$ is even.

1991 Arnold's Trivium, 14

Calculate with at most $10\%$ relative error \[\int_{-\infty}^{\infty}(x^4+4x+4)^{-100}dx\]

2007 Today's Calculation Of Integral, 211

When the parabola which has the axis parallel to $y$ -axis and passes through the origin touch to the rectangular hyperbola $xy=1$ in the first quadrant moves, prove that the area of the figure sorrounded by the parabola and the $x$-axis is constant.

2012 Today's Calculation Of Integral, 824

In the $xy$-plane, for $a>1$ denote by $S(a)$ the area of the figure bounded by the curve $y=(a-x)\ln x$ and the $x$-axis. Find the value of integer $n$ for which $\lim_{a\rightarrow \infty} \frac{S(a)}{a^n\ln a}$ is non-zero real number.

2009 Today's Calculation Of Integral, 496

Evaluate $ \int_{ \minus{} 1}^ {a^2} \frac {1}{x^2 \plus{} a^2}\ dx\ (a > 0).$ You may not use $ \tan ^{ \minus{} 1} x$ or Complex Integral here.

2006 VJIMC, Problem 4

Let $f:[0,\infty)\to\mathbb R$ ba a strictly convex continuous function such that $$\lim_{x\to+\infty}\frac{f(x)}x=+\infty.$$Prove that the improper integral $\int^{+\infty}_0\sin(f(x))\text dx$ is convergent but not absolutely convergent.

2007 Today's Calculation Of Integral, 235

Show that a function $ f(x)\equal{}\int_{\minus{}1}^1 (1\minus{}|\ t\ |)\cos (xt)\ dt$ is continuous at $ x\equal{}0$.

2012 District Olympiad, 4

Let $f:[0,1]\rightarrow \mathbb{R}$ a differentiable function such that $f(0)=f(1)=0$ and $|f'(x)|\le 1,\ \forall x\in [0,1]$. Prove that: \[\left|\int_0 ^1f(t)dt\right|<\frac{1}{4}\]

2018 Ramnicean Hope, 2

Find all differentiable functions $ f:(0,\infty )\longrightarrow (-\infty ,\infty ) $ having the property that $$ f'(\sqrt{x}) =\frac{1+x+x^2}{1+x} , $$ for any positive real numbers $ x. $ [i]Ovidiu Țâțan[/i]

1971 IMO Longlists, 47

A sequence of real numbers $x_1,x_2,\ldots ,x_n$ is given such that $x_{i+1}=x_i+\frac{1}{30000}\sqrt{1-x_i^2},\ i=1,2,\ldots ,$ and $x_1=0$. Can $n$ be equal to $50000$ if $x_n<1$?

2009 Today's Calculation Of Integral, 405

Calculate $ \displaystyle \left|\frac {\int_0^{\frac {\pi}{2}} (x\cos x + 1)e^{\sin x}\ dx}{\int_0^{\frac {\pi}{2}} (x\sin x - 1)e^{\cos x}\ dx}\right|$.

2005 National High School Mathematics League, 3

For positive integer $n$, define $f(n)=\begin{cases} 0, \text{if }n\text{ is a perfect square}\\ \displaystyle \left[\frac{1}{\{\sqrt{n}\}}\right], \text{if }n\text{ is not a perfect square}\\ \end{cases}$. Find the value of $\sum_{k=1}^{240} f(k)$. Note: $[x]$ is the integral part of real number $x$, and $\{x\}=x-[x]$.

2006 AIME Problems, 3

Find the least positive integer such that when its leftmost digit is deleted, the resulting integer is $\frac{1}{29}$ of the original integer.

2010 Today's Calculation Of Integral, 567

Let $ a$ be a positive real numbers. In the coordinate plane denote by $ S$ the area of the figure bounded by the curve $ y=\sin x\ (0\leq x\leq \pi)$ and the $x$-axis and denote $T$ by the area of the figure bounded by the curves $y=\sin x\ \left(0\leq x\leq \frac{\pi}{2}\right),\ y=a\cos x\ \left(0\leq x\leq \frac{\pi}{2}\right)$ and the $x$-axis. Find the value of $a$ such that $ S: T=3: 1$.

2010 Today's Calculation Of Integral, 627

Evaluate $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{(2\sin \theta +1)\cos ^ 3 \theta}{(\sin ^ 2 \theta +1)^2}d\theta .$ [i]Proposed by kunny[/i]