Found problems: 1687
2013 SEEMOUS, Problem 3
Find the maximum value of
$$\int^1_0|f'(x)|^2|f(x)|\frac1{\sqrt x}dx$$over all continuously differentiable functions $f:[0,1]\to\mathbb R$ with $f(0)=0$ and
$$\int^1_0|f'(x)|^2dx\le1.$$
2013 Putnam, 4
For any continuous real-valued function $f$ defined on the interval $[0,1],$ let \[\mu(f)=\int_0^1f(x)\,dx,\text{Var}(f)=\int_0^1(f(x)-\mu(f))^2\,dx, M(f)=\max_{0\le x\le 1}|f(x)|.\] Show that if $f$ and $g$ are continuous real-valued functions defined on the interval $[0,1],$ then \[\text{Var}(fg)\le 2\text{Var}(f)M(g)^2+2\text{Var}(g)M(f)^2.\]
2011 Vietnam Team Selection Test, 1
A grasshopper rests on the point $(1,1)$ on the plane. Denote by $O,$ the origin of coordinates. From that point, it jumps to a certain lattice point under the condition that, if it jumps from a point $A$ to $B,$ then the area of $\triangle AOB$ is equal to $\frac 12.$
$(a)$ Find all the positive integral poijnts $(m,n)$ which can be covered by the grasshopper after a finite number of steps, starting from $(1,1).$
$(b)$ If a point $(m,n)$ satisfies the above condition, then show that there exists a certain path for the grasshopper to reach $(m,n)$ from $(1,1)$ such that the number of jumps does not exceed $|m-n|.$
2011 Today's Calculation Of Integral, 703
Given a line segment $PQ$ with endpoints on the parabola $y=x^2$ such that the area bounded by $PQ$ and the parabola always equal to $\frac 43.$ Find the equation of the locus of the midpoint $M$.
2010 Harvard-MIT Mathematics Tournament, 8
Let $f(n)=\displaystyle\sum_{k=2}^\infty \dfrac{1}{k^n\cdot k!}.$ Calculate $\displaystyle\sum_{n=2}^\infty f(n)$.
2009 Today's Calculation Of Integral, 416
Answer the following questions.
(1) $ 0 < x\leq 2\pi$, prove that $ |\sin x| < x$.
(2) Let $ f_1(x) \equal{} \sin x\ , a$ be the constant such that $ 0 < a\leq 2\pi$.
Define $ f_{n \plus{} 1}(x) \equal{} \frac {1}{2a}\int_{x \minus{} a}^{x \plus{} a} f_n(t)\ dt\ (n \equal{} 1,\ 2,\ 3,\ \cdots)$. Find $ f_2(x)$.
(3) Find $ f_n(x)$ for all $ n$.
(4) For a given $ x$, find $ \sum_{n \equal{} 1}^{\infty} f_n(x)$.
2001 Italy TST, 4
We are given $2001$ balloons and a positive integer $k$. Each balloon has been blown up to a certain size (not necessarily the same for each balloon). In each step it is allowed to choose at most $k$ balloons and equalize their sizes to their arithmetic mean. Determine the smallest value of $k$ such that, whatever the initial sizes are, it is possible to make all the balloons have equal size after a finite number of steps.
1997 USAMO, 1
Let $p_1, p_2, p_3, \ldots$ be the prime numbers listed in increasing order, and let $x_0$ be a real number between 0 and 1. For positive integer $k$, define
\[ x_k = \begin{cases} 0 & \mbox{if} \; x_{k-1} = 0, \\[.1in] {\displaystyle \left\{ \frac{p_k}{x_{k-1}} \right\}} & \mbox{if} \; x_{k-1} \neq 0, \end{cases} \]
where $\{x\}$ denotes the fractional part of $x$. (The fractional part of $x$ is given by $x - \lfloor x \rfloor$ where $\lfloor x \rfloor$ is the greatest integer less than or equal to $x$.) Find, with proof, all $x_0$ satisfying $0 < x_0 < 1$ for which the sequence $x_0, x_1, x_2, \ldots$ eventually becomes 0.
1990 IMO Longlists, 94
Given integer $n > 1$ and real number $t \geq 1$. $P$ is a parallelogram with four vertices $(0, 0), (0, t), (tF_{2n+1}, tF_{2n}), (tF_{2n+1}, tF_{2n} + t)$. Here, ${F_n}$ is the $n$-th term of Fibonacci sequence defined by $F_0 = 0, F_1 = 1$ and $F_{m+1} = F_m + F_{m-1}$. Let $L$ be the number of integral points (whose coordinates are integers) interior to $P$, and $M$ be the area of $P$, which is $t^2F_{2n+1}.$
[b][i]i)[/i][/b] Prove that for any integral point $(a, b)$, there exists a unique pair of integers $(j, k)$ such that$ j(F_{n+1}, F_n) + k(F_n, F_{n-1}) = (a, b)$, that is,$ jF_{n+1} + kF_n = a$ and $jF_n + kF_{n-1} = b.$
[i][b]ii)[/b][/i] Using [i][b]i)[/b][/i] or not, prove that $|\sqrt L-\sqrt M| \leq \sqrt 2.$
1989 IMO Longlists, 39
Alice has two urns. Each urn contains four balls and on each ball a natural number is written. She draws one ball from each urn at random, notes the sum of the numbers written on them, and replaces the balls in the urns from which she took them. This she repeats a large number of times. Bill, on examining the numbers recorded, notices that the frequency with which each sum occurs is the same as if it were the sum of two natural numbers drawn at random from the range 1 to 4. What can he deduce about the numbers on the balls?
2011 Today's Calculation Of Integral, 704
A function $f_n(x)\ (n=0,\ 1,\ 2,\ 3,\ \cdots)$ satisfies the following conditions:
(i) $f_0(x)=e^{2x}+1$.
(ii) $f_n(x)=\int_0^x (n+2t)f_{n-1}(t)dt-\frac{2x^{n+1}}{n+1}\ (n=1,\ 2,\ 3,\ \cdots).$
Find $\sum_{n=1}^{\infty} f_n'\left(\frac 12\right).$
2024 ISI Entrance UGB, P1
Find, with proof, all possible values of $t$ such that
\[\lim_{n \to \infty} \left( \frac{1 + 2^{1/3} + 3^{1/3} + \dots + n^{1/3}}{n^t} \right ) = c\]
for some real $c>0$. Also find the corresponding values of $c$.
1971 Miklós Schweitzer, 6
Let $ a(x)$ and $ r(x)$ be positive continuous functions defined on the interval $ [0,\infty)$, and let \[ \liminf_{x \rightarrow \infty} (x-r(x)) >0.\] Assume that $ y(x)$ is a continuous function on the whole real line, that it is differentiable on $ [0, \infty)$, and that it satisfies \[ y'(x)=a(x)y(x-r(x))\] on $ [0, \infty)$. Prove that the limit \[ \lim_{x \rightarrow \infty}y(x) \exp \left\{ -%Error. "diaplaymath" is a bad command.
\int_0^x a(u)du \right \}\] exists and is finite.
[i]I. Gyori[/i]
1987 Swedish Mathematical Competition, 4
A differentiable function $f$ with $f(0) = f(1) = 0$ is defined on the interval $[0,1]$.
Prove that there exists a point $y \in [0,1]$ such that $| f' (y)| = 4 \int _0^1 | f(x)|dx$.
2010 Today's Calculation Of Integral, 579
Let $ a$ be a positive real number. Find $ \lim_{n\to\infty} \frac{(n\plus{}1)^a\plus{}(n\plus{}2)^a\plus{}\cdots \plus{}(n\plus{}n)^a}{1^{a}\plus{}2^{a}\plus{}\cdots \plus{}n^{a}}$
2007 Today's Calculation Of Integral, 178
Let $f(x)$ be a differentiable function such that $f'(x)+f(x)=4xe^{-x}\sin 2x,\ \ f(0)=0.$
Find $\lim_{n\to\infty}\sum_{k=1}^{n}f(k\pi).$
1985 Canada National Olympiad, 3
Let $P_1$ and $P_2$ be regular polygons of 1985 sides and perimeters $x$ and $y$ respectively. Each side of $P_1$ is tangent to a given circle of circumference $c$ and this circle passes through each vertex of $P_2$. Prove $x + y \ge 2c$. (You may assume that $\tan \theta \ge \theta$ for $0 \le \theta < \frac{\pi}{2}$.)
1994 Turkey MO (2nd round), 5
Find the set of all ordered pairs $(s,t)$ of positive integers such that \[t^{2}+1=s(s+1).\]
2007 Today's Calculation Of Integral, 231
Evaluate $ \int_0^{\frac{\pi}{3}} \frac{1}{\cos ^ 7 x}\ dx$.
1970 IMO Shortlist, 10
The real numbers $a_0,a_1,a_2,\ldots$ satisfy $1=a_0\le a_1\le a_2\le\ldots. b_1,b_2,b_3,\ldots$ are defined by $b_n=\sum_{k=1}^n{1-{a_{k-1}\over a_k}\over\sqrt a_k}$.
[b]a.)[/b] Prove that $0\le b_n<2$.
[b]b.)[/b] Given $c$ satisfying $0\le c<2$, prove that we can find $a_n$ so that $b_n>c$ for all sufficiently large $n$.
2011 Pre-Preparation Course Examination, 5
suppose that $v(x)=\sum_{p\le x,p\in \mathbb P}log(p)$ (here $\mathbb P$ denotes the set of all positive prime numbers). prove that the two statements below are equivalent:
[b]a)[/b] $v(x) \sim x$ when $x \longrightarrow \infty$
[b]b)[/b] $\pi (x) \sim \frac{x}{ln(x)}$ when $x \longrightarrow \infty$. (here $\pi (x)$ is number of the prime numbers less than or equal to $x$).
PEN S Problems, 32
Alice and Bob play the following number-guessing game. Alice writes down a list of positive integers $x_{1}$, $\cdots$, $x_{n}$, but does not reveal them to Bob, who will try to determine the numbers by asking Alice questions. Bob chooses a list of positive integers $a_{1}$, $\cdots$, $a_{n}$ and asks Alice to tell him the value of $a_{1}x_{1}+\cdots+a_{n}x_{n}$. Then Bob chooses another list of positive integers $b_{1}$, $\cdots$, $b_{n}$ and asks Alice for $b_{1}x_{1}+\cdots+b_{n}x_{n}$. Play continues in this way until Bob is able to determine Alice's numbers. How many rounds will Bob need in order to determine Alice's numbers?
2024 CMIMC Integration Bee, 2
\[\int_0^2 |\sin(\pi x)|+|\cos(\pi x)|\mathrm dx\]
[i]Proposed by Anagh Sangavarapu[/i]
2013 Putnam, 3
Suppose that the real numbers $a_0,a_1,\dots,a_n$ and $x,$ with $0<x<1,$ satisfy \[\frac{a_0}{1-x}+\frac{a_1}{1-x^2}+\cdots+\frac{a_n}{1-x^{n+1}}=0.\] Prove that there exists a real number $y$ with $0<y<1$ such that \[a_0+a_1y+\cdots+a_ny^n=0.\]
2013 F = Ma, 12
A spherical shell of mass $M$ and radius $R$ is completely filled with a frictionless fluid, also of mass M. It is released from rest, and then it rolls without slipping down an incline that makes an angle $\theta$ with the horizontal. What will be the acceleration of the shell down the incline just after it is released? Assume the acceleration of free fall is $g$. The moment of inertia of a thin shell of radius $r$ and mass $m$ about the center of mass is $I = \frac{2}{3}mr^2$; the momentof inertia of a solid sphere of radius r and mass m about the center of mass is $I = \frac{2}{5}mr^2$.
$\textbf{(A) } g \sin \theta \\
\textbf{(B) } \frac{3}{4} g \sin \theta\\
\textbf{(C) } \frac{1}{2} g \sin \theta\\
\textbf{(D) } \frac{3}{8} g \sin \theta\\
\textbf{(E) } \frac{3}{5} g \sin \theta$