This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 8

2012 Oral Moscow Geometry Olympiad, 2

Two equal polygons $F$ and $F'$ are given on the plane. It is known that the vertices of the polygon $F$ belong to $F'$ (may lie inside it or on the border). Is it true that all the vertices of these polygons coincide?

2024 CAPS Match, 3

Let $ABC$ be a triangle and $D$ a point on its side $BC.$ Points $E, F$ lie on the lines $AB, AC$ beyond vertices $B, C,$ respectively, such that $BE = BD$ and $CF = CD.$ Let $P$ be a point such that $D$ is the incenter of triangle $P EF.$ Prove that $P$ lies inside the circumcircle $\Omega$ of triangle $ABC$ or on it.

2006 Sharygin Geometry Olympiad, 8.6

A triangle $ABC$ and a point $P$ inside it are given. $A', B', C'$ are the projections of $P$ onto the straight lines ot the sides $BC,CA,AB$. Prove that the center of the circle circumscribed around the triangle $A'B'C'$ lies inside the triangle $ABC$.

2005 Sharygin Geometry Olympiad, 10.1

A convex quadrangle without parallel sides is given. For each triple of its vertices, a point is constructed that supplements this triple to a parallelogram, one of the diagonals of which coincides with the diagonal of the quadrangle. Prove that of the four points constructed, exactly one lies inside the original quadrangle.

2017 Thailand Mathematical Olympiad, 10

A lattice point is defined as a point on the plane with integer coordinates. Show that for all positive integers $n$, there is a circle on the plane with exactly n lattice points in its interior (not including its boundary).

1990 All Soviet Union Mathematical Olympiad, 526

Given a point $X$ and $n$ vectors $\overrightarrow{x_i}$ with sum zero in the plane. For each permutation of the vectors we form a set of $n$ points, by starting at $X$ and adding the vectors in order. For example, with the original ordering we get $X_1$ such that $XX_1 = \overrightarrow{x_1}, X_2$ such that $X_1X_2 = \overrightarrow{x_2}$ and so on. Show that for some permutation we can find two points $Y, Z$ with angle $\angle YXZ = 60^o $, so that all the points lie inside or on the triangle $XYZ$.

1984 Swedish Mathematical Competition, 1

Let $A$ and $B$ be two points inside a circle $C$. Show that there exists a circle that contains $A$ and $B$ and lies completely inside $C$.

2021 German National Olympiad, 2

Let $P$ on $AB$, $Q$ on $BC$, $R$ on $CD$ and $S$ on $AD$ be points on the sides of a convex quadrilateral $ABCD$. Show that the following are equivalent: (1) There is a choice of $P,Q,R,S$, for which all of them are interior points of their side, such that $PQRS$ has minimal perimeter. (2) $ABCD$ is a cyclic quadrilateral with circumcenter in its interior.