Found problems: 259
2022 Bulgarian Autumn Math Competition, Problem 9.4
Given is $2022\times 2022$ cells table. We can select $4$ cells, such that they make the figure $L$ (rotations, symmetric still count) (left one) and put a ball in each of them, or select $4$ cell which makes up the right figure (rotations, symmetric still count) and get one ball from each of them.
For which $k$ is it possible in a given moment to be exactly $k$ points in each of the cells
2010 AMC 8, 19
The two circles pictured have the same center $C$. Chord $\overline{AD}$ is tangent to the inner circle at $B$, $AC$ is $10$, and chord $\overline{AD}$ has length $16$. What is the area between the two circles?
[asy]
unitsize(45);
import graph; size(300); real lsf = 0.5; pen dp = linewidth(0.7) + fontsize(10); defaultpen(dp); pen ds = black; pen xdxdff = rgb(0.49,0.49,1);
draw((2,0.15)--(1.85,0.15)--(1.85,0)--(2,0)--cycle); draw(circle((2,1),2.24)); draw(circle((2,1),1)); draw((0,0)--(4,0)); draw((0,0)--(2,1)); draw((2,1)--(2,0)); draw((2,1)--(4,0));
dot((0,0),ds); label("$A$", (-0.19,-0.23),NE*lsf); dot((2,0),ds); label("$B$", (1.97,-0.31),NE*lsf); dot((2,1),ds); label("$C$", (1.96,1.09),NE*lsf); dot((4,0),ds); label("$D$", (4.07,-0.24),NE*lsf); clip((-3.1,-7.72)--(-3.1,4.77)--(11.74,4.77)--(11.74,-7.72)--cycle);
[/asy]
$ \textbf{(A)}\ 36 \pi \qquad\textbf{(B)}\ 49 \pi\qquad\textbf{(C)}\ 64 \pi\qquad\textbf{(D)}\ 81 \pi\qquad\textbf{(E)}\ 100 \pi $
2014 Contests, 1
Numbers $1$ through $2014$ are written on a board. A valid operation is to erase two numbers $a$ and $b$ on the board and replace them with the greatest common divisor and the least common multiple of $a$ and $b$.
Prove that, no matter how many operations are made, the sum of all the numbers that remain on the board is always larger than $2014$ $\times$ $\sqrt[2014]{2014!}$
1996 IMO Shortlist, 1
Four integers are marked on a circle. On each step we simultaneously replace each number by the difference between this number and next number on the circle, moving in a clockwise direction; that is, the numbers $ a,b,c,d$ are replaced by $ a\minus{}b,b\minus{}c,c\minus{}d,d\minus{}a.$ Is it possible after 1996 such to have numbers $ a,b,c,d$ such the numbers $ |bc\minus{}ad|, |ac \minus{} bd|, |ab \minus{} cd|$ are primes?
2013 Peru IMO TST, 6
Players $A$ and $B$ play a game with $N \geq 2012$ coins and $2012$ boxes arranged around a circle. Initially $A$ distributes the coins among the boxes so that there is at least $1$ coin in each box. Then the two of them make moves in the order $B,A,B,A,\ldots $ by the following rules:
[b](a)[/b] On every move of his $B$ passes $1$ coin from every box to an adjacent box.
[b](b)[/b] On every move of hers $A$ chooses several coins that were [i]not[/i] involved in $B$'s previous move and are in different boxes. She passes every coin to an adjacent box.
Player $A$'s goal is to ensure at least $1$ coin in each box after every move of hers, regardless of how $B$ plays and how many moves are made. Find the least $N$ that enables her to succeed.
1985 IMO Longlists, 10
Let $m$ boxes be given, with some balls in each box. Let $n < m$ be a given integer. The following operation is performed: choose $n$ of the boxes and put $1$ ball in each of them. Prove:
[i](a) [/i]If $m$ and $n$ are relatively prime, then it is possible, by performing the operation a finite number of times, to arrive at the situation that all the boxes contain an equal number of balls.
[i](b)[/i] If $m$ and $n$ are not relatively prime, there exist initial distributions of balls in the boxes such that an equal distribution is not possible to achieve.
2006 Iran MO (3rd Round), 3
$L$ is a fullrank lattice in $\mathbb R^{2}$ and $K$ is a sub-lattice of $L$, that $\frac{A(K)}{A(L)}=m$. If $m$ is the least number that for each $x\in L$, $mx$ is in $K$. Prove that there exists a basis $\{x_{1},x_{2}\}$ for $L$ that $\{x_{1},mx_{2}\}$ is a basis for $K$.
2011 Cono Sur Olympiad, 2
The numbers $1$ through $4^{n}$ are written on a board. In each step, Pedro erases two numbers $a$ and $b$ from the board, and writes instead the number $\frac{ab}{\sqrt{2a^2+2b^2}}$. Pedro repeats this procedure until only one number remains. Prove that this number is less than $\frac{1}{n}$, no matter what numbers Pedro chose in each step.
1988 IMO Shortlist, 29
A number of signal lights are equally spaced along a one-way railroad track, labeled in oder $ 1,2, \ldots, N, N \geq 2.$ As a safety rule, a train is not allowed to pass a signal if any other train is in motion on the length of track between it and the following signal. However, there is no limit to the number of trains that can be parked motionless at a signal, one behind the other. (Assume the trains have zero length.) A series of $ K$ freight trains must be driven from Signal 1 to Signal $ N.$ Each train travels at a distinct but constant spped at all times when it is not blocked by the safety rule. Show that, regardless of the order in which the trains are arranged, the same time will elapse between the first train's departure from Signal 1 and the last train's arrival at Signal $ N.$
2018 Middle European Mathematical Olympiad, 2
The two figures depicted below consisting of $6$ and $10$ unit squares, respectively, are called staircases.
Consider a $2018\times 2018$ board consisting of $2018^2$ cells, each being a unit square. Two arbitrary
cells were removed from the same row of the board. Prove that the rest of the board cannot be cut (along the cell borders) into staircases (possibly rotated).
2025 Bulgarian Winter Tournament, 11.3
We have \( n \) chips that are initially placed on the number line at position 0. On each move, we select a position \( x \in \mathbb{Z} \) where there are at least two chips; we take two of these chips, then place one at \( x-1 \) and the other at \( x+1 \).
a) Prove that after a finite number of moves, regardless of how the moves are chosen, we will reach a final position where no two chips occupy the same number on the number line.
b) For every possible final position, let \( \Delta \) represent the difference between the numbers where the rightmost and the leftmost chips are located. Find all possible values of \( \Delta \) in terms of \( n \).
2006 Pre-Preparation Course Examination, 1
Suppose that $X$ is a compact metric space and $T: X\rightarrow X$ is a continous function. Prove that $T$ has a returning point. It means there is a strictly increasing sequence $n_i$ such that $\lim_{k\rightarrow \infty} T^{n_k}(x_0)=x_0$ for some $x_0$.
2012 ISI Entrance Examination, 8
Let $S = \{1,2,3,\ldots,n\}$. Consider a function $f\colon S\to S$. A subset $D$ of $S$ is said to be invariant if for all $x\in D$ we have $f(x)\in D$. The empty set and $S$ are also considered as invariant subsets. By $\deg (f)$ we define the number of invariant subsets $D$ of $S$ for the function $f$.
[b]i)[/b] Show that there exists a function $f\colon S\to S$ such that $\deg (f)=2$.
[b]ii)[/b] Show that for every $1\leq k\leq n$ there exists a function $f\colon S\to S$ such that $\deg (f)=2^{k}$.
1997 Singapore Team Selection Test, 1
Four integers are marked on a circle. On each step we simultaneously replace each number by the difference between this number and next number on the circle, moving in a clockwise direction; that is, the numbers $ a,b,c,d$ are replaced by $ a\minus{}b,b\minus{}c,c\minus{}d,d\minus{}a.$ Is it possible after 1996 such to have numbers $ a,b,c,d$ such the numbers $ |bc\minus{}ad|, |ac \minus{} bd|, |ab \minus{} cd|$ are primes?
2005 China National Olympiad, 3
As the graph, a pond is divided into 2n (n $\geq$ 5) parts. Two parts are called neighborhood if they have a common side or arc. Thus every part has three neighborhoods. Now there are 4n+1 frogs at the pond. If there are three or more frogs at one part, then three of the frogs of the part will jump to the three neighborhoods repsectively. Prove that for some time later, the frogs at the pond will uniformily distribute. That is, for any part either there are frogs at the part or there are frogs at the each of its neighborhoods.
[img]http://www.mathlinks.ro/Forum/files/china2005_2_214.gif[/img]
1999 Belarusian National Olympiad, 8
Let $n$ be an integer greater than 2. A positive integer is said to be [i]attainable [/i]if it is 1 or can be obtained from 1 by a sequence of operations with the following properties:
1.) The first operation is either addition or multiplication.
2.) Thereafter, additions and multiplications are used alternately.
3.) In each addition, one can choose independently whether to add 2 or $n$
4.) In each multiplication, one can choose independently whether to multiply by 2 or by $n$.
A positive integer which cannot be so obtained is said to be [i]unattainable[/i].
[b]a.)[/b] Prove that if $n\geq 9$, there are infinitely many unattainable positive integers.
[b]b.)[/b] Prove that if $n=3$, all positive integers except 7 are attainable.
2007 Tournament Of Towns, 4
There three piles of pebbles, containing 5, 49, and 51 pebbles respectively. It is allowed to combine any two piles into a new one or to split any pile consisting of even number of pebbles into two equal piles. Is it possible to have 105 piles with one pebble in each in the end?
[i](3 points)[/i]
1991 China Team Selection Test, 3
$5$ points are given in the plane, any three non-collinear and any four non-concyclic. If three points determine a circle that has one of the remaining points inside it and the other one outside it, then the circle is said to be [i]good[/i]. Let the number of good circles be $n$; find all possible values of $n$.
2010 Indonesia TST, 1
The integers $ 1,2,\dots,20$ are written on the blackboard. Consider the following operation as one step: [i]choose two integers $ a$ and $ b$ such that $ a\minus{}b \ge 2$ and replace them with $ a\minus{}1$ and $ b\plus{}1$[/i]. Please, determine the maximum number of steps that can be done.
[i]Yudi Satria, Jakarta[/i]
2019 Tournament Of Towns, 2
Consider 2n+1 coins lying in a circle. At the beginning, all the coins are heads up. Moving clockwise, 2n+1 flips are performed: one coin is flipped, the next coin is skipped, the next coin is flipped, the next two coins are skipped, the next coin is flipped,the next three coins are skipped and so on, until finally 2n coins are skipped and the next coin is flipped.Prove that at the end of this procedure,exactly one coin is heads down.
1996 Romania National Olympiad, 3
Prove that $ \forall x\in \mathbb{R} $ , $ \cos ^7x+\cos ^7(x+\frac {2\pi}{3})+\cos ^7(x+\frac {4\pi}{3})=\frac {63}{64}\cos 3x $
1991 Arnold's Trivium, 94
Decompose a $5$-dimensional real linear space into the irreducible invariant subspaces of the group generated by cyclic permutations of the basis vectors.
2001 Tournament Of Towns, 5
The only pieces on an $8\times8$ chessboard are three rooks. Each moves along a row or a column without running to or jumping over another rook. The white rook starts at the bottom left corner, the black rook starts in the square directly above the white rook, and the red rook starts in the square directly to the right of the white rook. The white rook is to finish at the top right corner, the black rook in the square directly to the left of the white rook, and the red rook in the square directly below the white rook. At all times, each rook must be either in the same row or the same column as another rook. Is it possible to get the rooks to their destinations?
2015 Taiwan TST Round 2, 1
We have $2^m$ sheets of paper, with the number $1$ written on each of them. We perform the following operation. In every step we choose two distinct sheets; if the numbers on the two sheets are $a$ and $b$, then we erase these numbers and write the number $a + b$ on both sheets. Prove that after $m2^{m -1}$ steps, the sum of the numbers on all the sheets is at least $4^m$ .
[i]Proposed by Abbas Mehrabian, Iran[/i]
2022 Bolivia Cono Sur TST, P1
The numbers $1$ through $4^{n}$ are written on a board. In each step, Pedro erases two numbers $a$ and $b$ from the board, and writes instead the number $\frac{ab}{\sqrt{2a^2+2b^2}}$. Pedro repeats this procedure until only one number remains. Prove that this number is less than $\frac{1}{n}$, no matter what numbers Pedro chose in each step.