Found problems: 259
2000 Saint Petersburg Mathematical Olympiad, 9.5
The numbers $1,2,\dots,2000$ are written on the board. Two players are playing a game with alternating moves. A move consists of erasing two number $a,b$ and writing $a^b$. After some time only one number is left. The first player wins, if the numbers last digit is $2$, $7$ or $8$. If not, the second player wins. Who has a winning strategy?
[I]Proposed by V. Frank[/i]
2010 Kyiv Mathematical Festival, 4
1) The numbers $1,2,3,\ldots,2010$ are written on the blackboard. Two players in turn erase some two numbers and replace them with one number. The first player replaces numbers $a$ and $b$ with $ab-a-b$ while the second player replaces them with $ab+a+b.$ The game ends when a single number remains on the blackboard. If this number is smaller than $1\cdot2\cdot3\cdot\ldots\cdot2010$ then the first player wins. Otherwise the second player wins. Which of the players has a winning strategy?
2) The numbers $1,2,3,\ldots,2010$ are written on the blackboard. Two players in turn erase some two numbers and replace them with one number. The first player replaces numbers $a$ and $b$ with $ab-a-b+2$ while the second player replaces them with $ab+a+b.$ The game ends when a single number remains on the blackboard. If this number is smaller than $1\cdot2\cdot3\cdot\ldots\cdot2010$ then the first player wins. Otherwise the second player wins. Which of the players has a winning strategy?
2009 IMO Shortlist, 8
For any integer $n\geq 2$, we compute the integer $h(n)$ by applying the following procedure to its decimal representation. Let $r$ be the rightmost digit of $n$.
[list][*]If $r=0$, then the decimal representation of $h(n)$ results from the decimal representation of $n$ by removing this rightmost digit $0$.
[*]If $1\leq r \leq 9$ we split the decimal representation of $n$ into a maximal right part $R$ that solely consists of digits not less than $r$ and into a left part $L$ that either is empty or ends with a digit strictly smaller than $r$. Then the decimal representation of $h(n)$ consists of the decimal representation of $L$, followed by two copies of the decimal representation of $R-1$. For instance, for the number $17,151,345,543$, we will have $L=17,151$, $R=345,543$ and $h(n)=17,151,345,542,345,542$.[/list]
Prove that, starting with an arbitrary integer $n\geq 2$, iterated application of $h$ produces the integer $1$ after finitely many steps.
[i]Proposed by Gerhard Woeginger, Austria[/i]
1996 APMO, 1
Let $ABCD$ be a quadrilateral $AB = BC = CD = DA$. Let $MN$ and $PQ$ be two segments perpendicular to the diagonal $BD$ and such that the distance between them is $d > \frac{BD}{2}$, with $M \in AD$, $N \in DC$, $P \in AB$, and $Q \in BC$. Show that the perimeter of hexagon $AMNCQP$ does not depend on the position of $MN$ and $PQ$ so long as the distance between them remains constant.
1993 Vietnam National Olympiad, 3
Define the sequences $a_{0}, a_{1}, a_{2}, ...$ and $b_{0}, b_{1}, b_{2}, ...$ by $a_{0}= 2, b_{0}= 1, a_{n+1}= 2a_{n}b_{n}/(a_{n}+b_{n}), b_{n+1}= \sqrt{a_{n+1}b_{n}}$. Show that the two sequences converge to the same limit, and find the limit.
2011 USAMO, 2
An integer is assigned to each vertex of a regular pentagon so that the sum of the five integers is 2011. A turn of a solitaire game consists of subtracting an integer $m$ from each of the integers at two neighboring vertices and adding $2m$ to the opposite vertex, which is not adjacent to either of the first two vertices. (The amount $m$ and the vertices chosen can vary from turn to turn.) The game is won at a certain vertex if, after some number of turns, that vertex has the number 2011 and the other four vertices have the number 0. Prove that for any choice of the initial integers, there is exactly one vertex at which the game can be won.
2009 Iran MO (2nd Round), 3
$11$ people are sitting around a circle table, orderly (means that the distance between two adjacent persons is equal to others) and $11$ cards with numbers $1$ to $11$ are given to them. Some may have no card and some may have more than $1$ card. In each round, one [and only one] can give one of his cards with number $ i $ to his adjacent person if after and before the round, the locations of the cards with numbers $ i-1,i,i+1 $ don’t make an acute-angled triangle.
(Card with number $0$ means the card with number $11$ and card with number $12$ means the card with number $1$!)
Suppose that the cards are given to the persons regularly clockwise. (Mean that the number of the cards in the clockwise direction is increasing.)
Prove that the cards can’t be gathered at one person.
2014 NIMO Problems, 3
The numbers $1,2,\dots,10$ are written on a board. Every minute, one can select three numbers $a$, $b$, $c$ on the board, erase them, and write $\sqrt{a^2+b^2+c^2}$ in their place. This process continues until no more numbers can be erased. What is the largest possible number that can remain on the board at this point?
[i]Proposed by Evan Chen[/i]
1996 IMO Shortlist, 6
A finite number of coins are placed on an infinite row of squares. A sequence of moves is performed as follows: at each stage a square containing more than one coin is chosen. Two coins are taken from this square; one of them is placed on the square immediately to the left while the other is placed on the square immediately to the right of the chosen square. The sequence terminates if at some point there is at most one coin on each square. Given some initial configuration, show that any legal sequence of moves will terminate after the same number of steps and with the same final configuration.
2023 Brazil Cono Sur TST, 3
The numbers $1, 2, \dots , 50$ are written on a board. Letícia performs the following actions: she erases two numbers $a$ and $b$ on the board, writes the number $a+b$ on it and notes the number $ab(a+b)$ in her notebook. After performing these operations $49$ times, when there is only one number written on the board, Letícia calculates the sum $S$ of the $49$ numbers in the notebook.
a) Prove that $S$ doesn't depend on the order Letícia chooses the numbers to perform the operations.
b) Find the value of $S$.
1996 IMO Shortlist, 5
Let $ p,q,n$ be three positive integers with $ p \plus{} q < n$. Let $ (x_{0},x_{1},\cdots ,x_{n})$ be an $ (n \plus{} 1)$-tuple of integers satisfying the following conditions :
(a) $ x_{0} \equal{} x_{n} \equal{} 0$, and
(b) For each $ i$ with $ 1\leq i\leq n$, either $ x_{i} \minus{} x_{i \minus{} 1} \equal{} p$ or $ x_{i} \minus{} x_{i \minus{} 1} \equal{} \minus{} q$.
Show that there exist indices $ i < j$ with $ (i,j)\neq (0,n)$, such that $ x_{i} \equal{} x_{j}$.
2006 Germany Team Selection Test, 2
There are $ n$ markers, each with one side white and the other side black. In the beginning, these $ n$ markers are aligned in a row so that their white sides are all up. In each step, if possible, we choose a marker whose white side is up (but not one of the outermost markers), remove it, and reverse the closest marker to the left of it and also reverse the closest marker to the right of it. Prove that, by a finite sequence of such steps, one can achieve a state with only two markers remaining if and only if $ n \minus{} 1$ is not divisible by $ 3$.
[i]Proposed by Dusan Dukic, Serbia[/i]
Kvant 2021, M2651
In a room there are several children and a pile of 1000 sweets. The children come to the pile one after another in some order. Upon reaching the pile each of them divides the current number of sweets in the pile by the number of children in the room, rounds the result if it is not integer, takes the resulting number of sweets from the pile and leaves the room. All the boys round upwards and all the girls round downwards. The process continues until everyone leaves the room. Prove that the total number of sweets received by the boys does not depend on the order in which the children reach the pile.
[i]Maxim Didin[/i]
2006 India IMO Training Camp, 3
There are $ n$ markers, each with one side white and the other side black. In the beginning, these $ n$ markers are aligned in a row so that their white sides are all up. In each step, if possible, we choose a marker whose white side is up (but not one of the outermost markers), remove it, and reverse the closest marker to the left of it and also reverse the closest marker to the right of it. Prove that, by a finite sequence of such steps, one can achieve a state with only two markers remaining if and only if $ n \minus{} 1$ is not divisible by $ 3$.
[i]Proposed by Dusan Dukic, Serbia[/i]
1979 IMO Longlists, 30
Let $M$ be a set of points in a plane with at least two elements. Prove that if $M$ has two axes of symmetry $g_1$ and $g_2$ intersecting at an angle $\alpha = q\pi$, where $q$ is irrational, then $M$ must be infinite.
2011 Cono Sur Olympiad, 2
The numbers $1$ through $4^{n}$ are written on a board. In each step, Pedro erases two numbers $a$ and $b$ from the board, and writes instead the number $\frac{ab}{\sqrt{2a^2+2b^2}}$. Pedro repeats this procedure until only one number remains. Prove that this number is less than $\frac{1}{n}$, no matter what numbers Pedro chose in each step.
2007 Canada National Olympiad, 4
For two real numbers $ a$, $ b$, with $ ab\neq 1$, define the $ \ast$ operation by
\[ a\ast b=\frac{a+b-2ab}{1-ab}.\] Start with a list of $ n\geq 2$ real numbers whose entries $ x$ all satisfy $ 0<x<1$. Select any two numbers $ a$ and $ b$ in the list; remove them and put the number $ a\ast b$ at the end of the list, thereby reducing its length by one. Repeat this procedure until a single number remains.
$ a.$ Prove that this single number is the same regardless of the choice of pair at each stage.
$ b.$ Suppose that the condition on the numbers $ x$ is weakened to $ 0<x\leq 1$. What happens if the list contains exactly one $ 1$?
2013 Peru IMO TST, 6
Players $A$ and $B$ play a game with $N \geq 2012$ coins and $2012$ boxes arranged around a circle. Initially $A$ distributes the coins among the boxes so that there is at least $1$ coin in each box. Then the two of them make moves in the order $B,A,B,A,\ldots $ by the following rules:
[b](a)[/b] On every move of his $B$ passes $1$ coin from every box to an adjacent box.
[b](b)[/b] On every move of hers $A$ chooses several coins that were [i]not[/i] involved in $B$'s previous move and are in different boxes. She passes every coin to an adjacent box.
Player $A$'s goal is to ensure at least $1$ coin in each box after every move of hers, regardless of how $B$ plays and how many moves are made. Find the least $N$ that enables her to succeed.
2013 India IMO Training Camp, 3
Players $A$ and $B$ play a game with $N \geq 2012$ coins and $2012$ boxes arranged around a circle. Initially $A$ distributes the coins among the boxes so that there is at least $1$ coin in each box. Then the two of them make moves in the order $B,A,B,A,\ldots $ by the following rules:
[b](a)[/b] On every move of his $B$ passes $1$ coin from every box to an adjacent box.
[b](b)[/b] On every move of hers $A$ chooses several coins that were [i]not[/i] involved in $B$'s previous move and are in different boxes. She passes every coin to an adjacent box.
Player $A$'s goal is to ensure at least $1$ coin in each box after every move of hers, regardless of how $B$ plays and how many moves are made. Find the least $N$ that enables her to succeed.
1964 Miklós Schweitzer, 7
Find all linear homogeneous differential equations with continuous coefficients (on the whole real line) such that for any solution $ f(t)$ and any real number $ c,f(t\plus{}c)$ is also a solution.
1994 IMO Shortlist, 3
Peter has three accounts in a bank, each with an integral number of dollars. He is only allowed to transfer money from one account to another so that the amount of money in the latter is doubled. Prove that Peter can always transfer all his money into two accounts. Can Peter always transfer all his money into one account?
2012 India IMO Training Camp, 1
The cirumcentre of the cyclic quadrilateral $ABCD$ is $O$. The second intersection point of the circles $ABO$ and $CDO$, other than $O$, is $P$, which lies in the interior of the triangle $DAO$. Choose a point $Q$ on the extension of $OP$ beyond $P$, and a point $R$ on the extension of $OP$ beyond $O$. Prove that $\angle QAP=\angle OBR$ if and only if $\angle PDQ=\angle RCO$.
2016 Indonesia TST, 2
Let $a,b$ be two positive integers, such that $ab\neq 1$. Find all the integer values that $f(a,b)$ can take, where \[ f(a,b) = \frac { a^2+ab+b^2} { ab- 1} . \]
2010 IMO, 5
Each of the six boxes $B_1$, $B_2$, $B_3$, $B_4$, $B_5$, $B_6$ initially contains one coin. The following operations are allowed
Type 1) Choose a non-empty box $B_j$, $1\leq j \leq 5$, remove one coin from $B_j$ and add two coins to $B_{j+1}$;
Type 2) Choose a non-empty box $B_k$, $1\leq k \leq 4$, remove one coin from $B_k$ and swap the contents (maybe empty) of the boxes $B_{k+1}$ and $B_{k+2}$.
Determine if there exists a finite sequence of operations of the allowed types, such that the five boxes $B_1$, $B_2$, $B_3$, $B_4$, $B_5$ become empty, while box $B_6$ contains exactly $2010^{2010^{2010}}$ coins.
[i]Proposed by Hans Zantema, Netherlands[/i]
2011 Czech-Polish-Slovak Match, 2
Written on a blackboard are $n$ nonnegative integers whose greatest common divisor is $1$. A [i]move[/i] consists of erasing two numbers $x$ and $y$, where $x\ge y$, on the blackboard and replacing them with the numbers $x-y$ and $2y$. Determine for which original $n$-tuples of numbers on the blackboard is it possible to reach a point, after some number of moves, where $n-1$ of the numbers of the blackboard are zeroes.