This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 259

1996 IMO, 6

Let $ p,q,n$ be three positive integers with $ p \plus{} q < n$. Let $ (x_{0},x_{1},\cdots ,x_{n})$ be an $ (n \plus{} 1)$-tuple of integers satisfying the following conditions : (a) $ x_{0} \equal{} x_{n} \equal{} 0$, and (b) For each $ i$ with $ 1\leq i\leq n$, either $ x_{i} \minus{} x_{i \minus{} 1} \equal{} p$ or $ x_{i} \minus{} x_{i \minus{} 1} \equal{} \minus{} q$. Show that there exist indices $ i < j$ with $ (i,j)\neq (0,n)$, such that $ x_{i} \equal{} x_{j}$.

1985 USAMO, 5

Let $a_1,a_2,a_3,\cdots$ be a non-decreasing sequence of positive integers. For $m\ge1$, define $b_m=\min\{n: a_n \ge m\}$, that is, $b_m$ is the minimum value of $n$ such that $a_n\ge m$. If $a_{19}=85$, determine the maximum value of \[a_1+a_2+\cdots+a_{19}+b_1+b_2+\cdots+b_{85}.\]

2017 Greece Team Selection Test, 4

Tags: algebra , invariant
Some positive integers are initially written on a board, where each $2$ of them are different. Each time we can do the following moves: (1) If there are 2 numbers (written in the board) in the form $n, n+1$ we can erase them and write down $n-2$ (2) If there are 2 numbers (written in the board) in the form $n, n+4$ we can erase them and write down $n-1$ After some moves, there might appear negative numbers. Find the maximum value of the integer $c$ such that: Independetly of the starting numbers, each number which appears in any move is greater or equal to $c$

2016 Philippine MO, 1

The operations below can be applied on any expression of the form \(ax^2+bx+c\). $(\text{I})$ If \(c \neq 0\), replace \(a\) by \(4a-\frac{3}{c}\) and \(c\) by \(\frac{c}{4}\). $(\text{II})$ If \(a \neq 0\), replace \(a\) by \(-\frac{a}{2}\) and \(c\) by \(-2c+\frac{3}{a}\). $(\text{III}_t)$ Replace \(x\) by \(x-t\), where \(t\) is an integer. (Different values of \(t\) can be used.) Is it possible to transform \(x^2-x-6\) into each of the following by applying some sequence of the above operations? $(\text{a})$ \(5x^2+5x-1\) $(\text{b})$ \(x^2+6x+2\)

2009 APMO, 1

Consider the following operation on positive real numbers written on a blackboard: Choose a number $ r$ written on the blackboard, erase that number, and then write a pair of positive real numbers $ a$ and $ b$ satisfying the condition $ 2 r^2 \equal{} ab$ on the board. Assume that you start out with just one positive real number $ r$ on the blackboard, and apply this operation $ k^2 \minus{} 1$ times to end up with $ k^2$ positive real numbers, not necessarily distinct. Show that there exists a number on the board which does not exceed kr.

2022 Cyprus JBMO TST, 4

The numbers $1, 2, 3, \ldots , 10$ are written on the blackboard. In each step, Andrew chooses two numbers $a, b$ which are written on the blackboard such that $a\geqslant 2b$, he erases them, and in their place writes the number $a-2b$. Find all numbers $n$, such that after a sequence of steps as above, at the end only the number $n$ will remain on the blackboard.

1988 IMO Shortlist, 31

Around a circular table an even number of persons have a discussion. After a break they sit again around the circular table in a different order. Prove that there are at least two people such that the number of participants sitting between them before and after a break is the same.

2023 Bulgaria JBMO TST, 3

There are infinitely many boxes - initially one of them contains $n$ balls and all others are empty. On a single move we take some balls from a non-empty box and put them into an empty box and on a sheet of paper we write down the product of the resulting amount of balls in the two boxes. After some moves, the sum of all numbers on the sheet of paper became $2023$. What is the smallest possible value of $n$?

1988 IMO Longlists, 83

A number of signal lights are equally spaced along a one-way railroad track, labeled in oder $ 1,2, \ldots, N, N \geq 2.$ As a safety rule, a train is not allowed to pass a signal if any other train is in motion on the length of track between it and the following signal. However, there is no limit to the number of trains that can be parked motionless at a signal, one behind the other. (Assume the trains have zero length.) A series of $ K$ freight trains must be driven from Signal 1 to Signal $ N.$ Each train travels at a distinct but constant spped at all times when it is not blocked by the safety rule. Show that, regardless of the order in which the trains are arranged, the same time will elapse between the first train's departure from Signal 1 and the last train's arrival at Signal $ N.$

1986 IMO Longlists, 38

To each vertex of a regular pentagon an integer is assigned, so that the sum of all five numbers is positive. If three consecutive vertices are assigned the numbers $x,y,z$ respectively, and $y<0$, then the following operation is allowed: $x,y,z$ are replaced by $x+y,-y,z+y$ respectively. Such an operation is performed repeatedly as long as at least one of the five numbers is negative. Determine whether this procedure necessarily comes to an end after a finite number of steps.

2001 IMO Shortlist, 7

A pile of $n$ pebbles is placed in a vertical column. This configuration is modified according to the following rules. A pebble can be moved if it is at the top of a column which contains at least two more pebbles than the column immediately to its right. (If there are no pebbles to the right, think of this as a column with 0 pebbles.) At each stage, choose a pebble from among those that can be moved (if there are any) and place it at the top of the column to its right. If no pebbles can be moved, the configuration is called a [i]final configuration[/i]. For each $n$, show that, no matter what choices are made at each stage, the final configuration obtained is unique. Describe that configuration in terms of $n$. [url=http://www.mathlinks.ro/Forum/viewtopic.php?p=119189]IMO ShortList 2001, combinatorics problem 7, alternative[/url]

2022 Brazil National Olympiad, 1

A single player game has the following rules: initially, there are $10$ piles of stones with $1,2,...,10$ stones, respectively. A movement consists on making one of the following operations: i) to choose $2$ piles, both of them with at least $2$ stones, combine them and then add $2$ stones to the new pile; ii) to choose a pile with at least $4$ stones, remove $2$ stones from it, and then split it into two piles with amount of piles to be chosen by the player. The game continues until is not possible to make an operation. a) Give an example of a sequence of moves leading to the end of the game. b) Make a table with the total number of stones and the number of piles before and after the first 5 operations in your example above. c) Show that the number of piles with one stone in the end of the game is always the same, no matter how the movements are made.

2006 Germany Team Selection Test, 2

There are $ n$ markers, each with one side white and the other side black. In the beginning, these $ n$ markers are aligned in a row so that their white sides are all up. In each step, if possible, we choose a marker whose white side is up (but not one of the outermost markers), remove it, and reverse the closest marker to the left of it and also reverse the closest marker to the right of it. Prove that, by a finite sequence of such steps, one can achieve a state with only two markers remaining if and only if $ n \minus{} 1$ is not divisible by $ 3$. [i]Proposed by Dusan Dukic, Serbia[/i]

2012 AIME Problems, 11

A frog begins at $P_0 = (0,0)$ and makes a sequence of jumps according to the following rule: from $P_n=(x_n,y_n)$, the frog jumps to $P_{n+1}$, which may be any of the points $(x_n+7, y_n+2)$, $(x_n+2,y_n+7)$, $(x_n-5, y_n-10)$, or $(x_n-10,y_n-5)$. There are $M$ points $(x,y)$ with $|x|+|y| \le 100$ that can be reached by a sequence of such jumps. Find the remainder when $M$ is divided by $1000$.

2006 India IMO Training Camp, 3

There are $ n$ markers, each with one side white and the other side black. In the beginning, these $ n$ markers are aligned in a row so that their white sides are all up. In each step, if possible, we choose a marker whose white side is up (but not one of the outermost markers), remove it, and reverse the closest marker to the left of it and also reverse the closest marker to the right of it. Prove that, by a finite sequence of such steps, one can achieve a state with only two markers remaining if and only if $ n \minus{} 1$ is not divisible by $ 3$. [i]Proposed by Dusan Dukic, Serbia[/i]

2021 Science ON grade VI, 4

The numbers $\frac 32$, $\frac 43$ and $\frac 65$ are intially written on the blackboard. A move consists of erasing one of the numbers from the blackboard, call it $a$, and replacing it with $bc-b-c+2$, where $b,c$ are the other two numbers currently written on the blackboard. Is it possible that $\frac{1000}{999}$ would eventually appear on the blackboard? What about $\frac{113}{108}$? [i] (Andrei Bâra)[/i]

2010 Tuymaada Olympiad, 4

On a blackboard there are $2010$ natural nonzero numbers. We define a "move" by erasing $x$ and $y$ with $y\neq0$ and replacing them with $2x+1$ and $y-1$, or we can choose to replace them by $2x+1$ and $\frac{y-1}{4}$ if $y-1$ is divisible by 4. Knowing that in the beginning the numbers $2006$ and $2008$ have been erased, show that the original set of numbers cannot be attained again by any sequence of moves.

2021 Alibaba Global Math Competition, 16

Let $G$ be a finite group, and let $H_1, H_2 \subset G$ be two subgroups. Suppose that for any representation of $G$ on a finite-dimensional complex vector space $V$, one has that \[\text{dim} V^{H_1}=\text{dim} V^{H_2},\] where $V^{H_i}$ is the subspace of $H_i$-invariant vectors in $V$ ($i=1,2$). Prove that \[Z(G) \cap H_1=Z(G) \cap H_2.\] Here $Z(G)$ denotes the center of $G$.

1995 Vietnam National Olympiad, 3

Given an integer $ n\ge 2$ and a reular 2n-gon. Color all verices of the 2n-gon with n colors such that: [b](i)[/b] Each vertice is colored by exactly one color. [b](ii)[/b] Two vertices don't have the same color. Two ways of coloring, satisfying the conditions above, are called equilavent if one obtained from the other by a rotation whose center is the center of polygon. Find the total number of mutually non-equivalent ways of coloring. [i]Alternative statement:[/i] In how many ways we can color vertices of an regular 2n-polygon using n different colors such that two adjent vertices are colored by different colors. Two colorings which can be received from each other by rotation are considered as the same.

2010 Germany Team Selection Test, 2

Five identical empty buckets of $2$-liter capacity stand at the vertices of a regular pentagon. Cinderella and her wicked Stepmother go through a sequence of rounds: At the beginning of every round, the Stepmother takes one liter of water from the nearby river and distributes it arbitrarily over the five buckets. Then Cinderella chooses a pair of neighbouring buckets, empties them to the river and puts them back. Then the next round begins. The Stepmother goal's is to make one of these buckets overflow. Cinderella's goal is to prevent this. Can the wicked Stepmother enforce a bucket overflow? [i]Proposed by Gerhard Woeginger, Netherlands[/i]

1994 IMO Shortlist, 5

$ 1994$ girls are seated at a round table. Initially one girl holds $ n$ tokens. Each turn a girl who is holding more than one token passes one token to each of her neighbours. a.) Show that if $ n < 1994$, the game must terminate. b.) Show that if $ n \equal{} 1994$ it cannot terminate.

1961 All-Soviet Union Olympiad, 5

Consider a quartet of positive numbers $(a,b,c,d)$. In one step, we transform it to $(ab,bc,cd,da)$. Prove that you can never obtain the initial set if neither of $a,b,c,d$ is $1$.

2021 USAMTS Problems, 2

Tags: invariant
Sydney the squirrel is at $(0, 0)$ and is trying to get to $(2021, 2022)$. She can move only by reflecting her position over any line that can be formed by connecting two lattice points, provided that the reflection puts her on another lattice point. Is it possible for Sydney to reach $(2021, 2022)$?

2012 Kyrgyzstan National Olympiad, 6

The numbers $ 1, 2,\ldots, 50 $ are written on a blackboard. Each minute any two numbers are erased and their positive difference is written instead. At the end one number remains. Which values can take this number?

2023 Indonesia TST, 2

Let $n > 3$ be a positive integer. Suppose that $n$ children are arranged in a circle, and $n$ coins are distributed between them (some children may have no coins). At every step, a child with at least 2 coins may give 1 coin to each of their immediate neighbors on the right and left. Determine all initial distributions of the coins from which it is possible that, after a finite number of steps, each child has exactly one coin.