This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 124

2001 AIME Problems, 4

In triangle $ABC$, angles $A$ and $B$ measure 60 degrees and 45 degrees, respectively. The bisector of angle $A$ intersects $\overline{BC}$ at $T$, and $AT=24.$ The area of triangle $ABC$ can be written in the form $a+b\sqrt{c},$ where $a$, $b$, and $c$ are positive integers, and $c$ is not divisible by the square of any prime. Find $a+b+c.$

2003 AMC 10, 17

The number of inches in the perimeter of an equilateral triangle equals the number of square inches in the area of its circumscribed circle. What is the radius, in inches, of the circle? $ \textbf{(A)}\ \frac{3\sqrt2}{\pi} \qquad \textbf{(B)}\ \frac{3\sqrt3}{\pi} \qquad \textbf{(C)}\ \sqrt3 \qquad \textbf{(D)}\ \frac{6}{\pi} \qquad \textbf{(E)}\ \sqrt3\pi$

2006 Switzerland Team Selection Test, 1

In the triangle $A,B,C$, let $D$ be the middle of $BC$ and $E$ the projection of $C$ on $AD$. Suppose $\angle ACE = \angle ABC$. Show that the triangle $ABC$ is isosceles or rectangle.

2015 AMC 10, 19

The isosceles right triangle $ABC$ has right angle at $C$ and area $12.5$. The rays trisecting $\angle{ACB}$ intersect $AB$ at $D$ and $E$. What is the area of $\triangle{CDE}$? $\textbf{(A) }\frac{5\sqrt{2}}{3}\qquad\textbf{(B) }\frac{50\sqrt{3}-75}{4}\qquad\textbf{(C) }\frac{15\sqrt{3}}{8}\qquad\textbf{(D) }\frac{50-25\sqrt{3}}{2}\qquad\textbf{(E) }\frac{25}{6}$

2003 Bulgaria Team Selection Test, 5

Let $ABCD$ be a circumscribed quadrilateral and let $P$ be the orthogonal projection of its in center on $AC$. Prove that $\angle {APB}=\angle {APD}$

2011 AIME Problems, 4

In triangle $ABC$, $AB=125,AC=117$, and $BC=120$. The angle bisector of angle $A$ intersects $\overline{BC}$ at point $L$, and the angle bisector of angle $B$ intersects $\overline{AC}$ at point $K$. Let $M$ and $N$ be the feet of the perpendiculars from $C$ to $\overline{BK}$ and $\overline{AL}$, respectively. Find $MN$.

1992 IMO Shortlist, 11

In a triangle $ ABC,$ let $ D$ and $ E$ be the intersections of the bisectors of $ \angle ABC$ and $ \angle ACB$ with the sides $ AC,AB,$ respectively. Determine the angles $ \angle A,\angle B, \angle C$ if $ \angle BDE \equal{} 24 ^{\circ},$ $ \angle CED \equal{} 18 ^{\circ}.$

2010 Contests, 3

$ABCD$ is a parallelogram in which angle $DAB$ is acute. Points $A, P, B, D$ lie on one circle in exactly this order. Lines $AP$ and $CD$ intersect in $Q$. Point $O$ is the circumcenter of the triangle $CPQ$. Prove that if $D \neq O$ then the lines $AD$ and $DO$ are perpendicular.

2006 Macedonia National Olympiad, 4

Let $M$ be a point on the smaller arc $A_1A_n$ of the circumcircle of a regular $n$-gon $A_1A_2\ldots A_n$ . $(a)$ If $n$ is even, prove that $\sum_{i=1}^n(-1)^iMA_i^2=0$. $(b)$ If $n$ is odd, prove that $\sum_{i=1}^n(-1)^iMA_i=0$.

2013 India IMO Training Camp, 2

In a triangle $ABC$ with $B = 90^\circ$, $D$ is a point on the segment $BC$ such that the inradii of triangles $ABD$ and $ADC$ are equal. If $\widehat{ADB} = \varphi$ then prove that $\tan^2 (\varphi/2) = \tan (C/2)$.

2005 Junior Balkan Team Selection Tests - Moldova, 5

Let $ABC$ be an acute-angled triangle, and let $F$ be the foot of its altitude from the vertex $C$. Let $M$ be the midpoint of the segment $CA$. Assume that $CF=BM$. Then the angle $MBC$ is equal to angle $FCA$ if and only if the triangle $ABC$ is equilateral.

2014 China Team Selection Test, 4

Given circle $O$ with radius $R$, the inscribed triangle $ABC$ is an acute scalene triangle, where $AB$ is the largest side. $AH_A, BH_B,CH_C$ are heights on $BC,CA,AB$. Let $D$ be the symmetric point of $H_A$ with respect to $H_BH_C$, $E$ be the symmetric point of $H_B$ with respect to $H_AH_C$. $P$ is the intersection of $AD,BE$, $H$ is the orthocentre of $\triangle ABC$. Prove: $OP\cdot OH$ is fixed, and find this value in terms of $R$. (Edited)

1989 AIME Problems, 10

Let $a$, $b$, $c$ be the three sides of a triangle, and let $\alpha$, $\beta$, $\gamma$, be the angles opposite them. If $a^2+b^2=1989c^2$, find \[ \frac{\cot \gamma}{\cot \alpha+\cot \beta}. \]

1992 IMO Longlists, 42

In a triangle $ ABC,$ let $ D$ and $ E$ be the intersections of the bisectors of $ \angle ABC$ and $ \angle ACB$ with the sides $ AC,AB,$ respectively. Determine the angles $ \angle A,\angle B, \angle C$ if $ \angle BDE \equal{} 24 ^{\circ},$ $ \angle CED \equal{} 18 ^{\circ}.$

2013 Canadian Mathematical Olympiad Qualification Repechage, 2

In triangle $ABC$, $\angle A = 90^\circ$ and $\angle C = 70^\circ$. $F$ is point on $AB$ such that $\angle ACF = 30^\circ$, and $E$ is a point on $CA$ such that $\angle CF E = 20^\circ$. Prove that $BE$ bisects $\angle B$.

2013 Sharygin Geometry Olympiad, 3

Let $ABC$ be a right-angled triangle ($\angle B = 90^\circ$). The excircle inscribed into the angle $A$ touches the extensions of the sides $AB$, $AC$ at points $A_1, A_2$ respectively; points $C_1, C_2$ are defined similarly. Prove that the perpendiculars from $A, B, C$ to $C_1C_2, A_1C_1, A_1A_2$ respectively, concur.

2012 Turkey Team Selection Test, 1

In a triangle $ABC,$ incircle touches the sides $BC, CA, AB$ at $D, E, F,$ respectively. A circle $\omega$ passing through $A$ and tangent to line $BC$ at $D$ intersects the line segments $BF$ and $CE$ at $K$ and $L,$ respectively. The line passing through $E$ and parallel to $DL$ intersects the line passing through $F$ and parallel to $DK$ at $P.$ If $R_1, R_2, R_3, R_4$ denotes the circumradius of the triangles $AFD, AED, FPD, EPD,$ respectively, prove that $R_1R_4=R_2R_3.$

2012 National Olympiad First Round, 29

Let $D$ and $E$ be points on $[BC]$ and $[AC]$ of acute $\triangle ABC$, respectively. $AD$ and $BE$ meet at $F$. If $|AF|=|CD|=2|BF|=2|CE|$, and $Area(\triangle ABF) = Area(\triangle DEC)$, then $Area(\triangle AFC)/Area(\triangle BFC) = ?$ $ \textbf{(A)}\ 4 \qquad \textbf{(B)}\ 2\sqrt2 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ \sqrt2 \qquad \textbf{(E)}\ 1$

1984 IMO Longlists, 3

The opposite sides of the reentrant hexagon $AFBDCE$ intersect at the points $K,L,M$ (as shown in the figure). It is given that $AL = AM = a, BM = BK = b$, $CK = CL = c, LD = DM = d, ME = EK = e, FK = FL = f$. [img]http://imgur.com/LUFUh.png[/img] $(a)$ Given length $a$ and the three angles $\alpha, \beta$ and $\gamma$ at the vertices $A, B,$ and $C,$ respectively, satisfying the condition $\alpha+\beta+\gamma<180^{\circ}$, show that all the angles and sides of the hexagon are thereby uniquely determined. $(b)$ Prove that \[\frac{1}{a}+\frac{1}{c}=\frac{1}{b}+\frac{1}{d}\] Easier version of $(b)$. Prove that \[(a + f)(b + d)(c + e)= (a + e)(b + f)(c + d)\]

2003 AIME Problems, 7

Find the area of rhombus $ABCD$ given that the radii of the circles circumscribed around triangles $ABD$ and $ACD$ are $12.5$ and $25$, respectively.

1993 Brazil National Olympiad, 4

$ABCD$ is a convex quadrilateral with \[\angle BAC = 30^\circ \]\[\angle CAD = 20^\circ\]\[\angle ABD = 50^\circ\]\[\angle DBC = 30^\circ\] If the diagonals intersect at $P$, show that $PC = PD$.

2000 Brazil Team Selection Test, Problem 1

Consider a triangle $ABC$ and $I$ its incenter. The line $(AI)$ meets the circumcircle of $ABC$ in $D$. Let $E$ and $F$ be the orthogonal projections of $I$ on $(BD)$ and $(CD)$ respectively. Assume that $IE+IF=\frac{1}{2}AD$. Calculate $\angle{BAC}$. [color=red][Moderator edited: Also discussed at http://www.mathlinks.ro/Forum/viewtopic.php?t=5088 .][/color]

2014 Harvard-MIT Mathematics Tournament, 4

In quadrilateral $ABCD$, $\angle DAC = 98^{\circ}$, $\angle DBC = 82^\circ$, $\angle BCD = 70^\circ$, and $BC = AD$. Find $\angle ACD.$

2012 AMC 10, 14

Two equilateral triangles are contained in a square whose side length is $2\sqrt3$. The bases of these triangles are the opposite sides of the square, and their intersection is a rhombus. What is the area of the rhombus? $ \textbf{(A)}\ \frac{3}{2}\qquad\textbf{(B)}\ \sqrt3\qquad\textbf{(C)}\ 2\sqrt2-1\qquad\textbf{(D)}\ 8\sqrt3-12\qquad\textbf{(E)}\ \frac{4\sqrt3}{3}$

2011 Indonesia MO, 3

Given an acute triangle $ABC$, let $l_a$ be the line passing $A$ and perpendicular to $AB$, $l_b$ be the line passing $B$ and perpendicular to $BC$, and $l_c$ be the line passing $C$ and perpendicular to $CA$. Let $D$ be the intersection of $l_b$ and $l_c$, $E$ be the intersection of $l_c$ and $l_a$, and $F$ be the intersection of $l_a$ and $l_b$. Prove that the area of the triangle $DEF$ is at least three times of the area of $ABC$.