This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 37

2021 Argentina National Olympiad Level 2, 3

Tags: geometry , length , arc
A circle is divided into $2n$ equal arcs by $2n$ points. Find all $n>1$ such that these points can be joined in pairs using $n$ segments, all of different lengths and such that each point is the endpoint of exactly one segment.

2010 Contests, 2

Let $\Gamma_1$, $\Gamma_2$, $\Gamma_3$, $\Gamma_4$ be distinct circles such that $\Gamma_1$, $\Gamma_3$ are externally tangent at $P$, and $\Gamma_2$, $\Gamma_4$ are externally tangent at the same point $P$. Suppose that $\Gamma_1$ and $\Gamma_2$; $\Gamma_2$ and $\Gamma_3$; $\Gamma_3$ and $\Gamma_4$; $\Gamma_4$ and $\Gamma_1$ meet at $A$, $B$, $C$, $D$, respectively, and that all these points are different from $P$. Prove that \[ \frac{AB\cdot BC}{AD\cdot DC}=\frac{PB^2}{PD^2}. \]

2010 Indonesia TST, 2

Let $\Gamma_1$, $\Gamma_2$, $\Gamma_3$, $\Gamma_4$ be distinct circles such that $\Gamma_1$, $\Gamma_3$ are externally tangent at $P$, and $\Gamma_2$, $\Gamma_4$ are externally tangent at the same point $P$. Suppose that $\Gamma_1$ and $\Gamma_2$; $\Gamma_2$ and $\Gamma_3$; $\Gamma_3$ and $\Gamma_4$; $\Gamma_4$ and $\Gamma_1$ meet at $A$, $B$, $C$, $D$, respectively, and that all these points are different from $P$. Prove that \[ \frac{AB\cdot BC}{AD\cdot DC}=\frac{PB^2}{PD^2}. \]

1965 Spain Mathematical Olympiad, 3

Tags: geometry , length
A disk in a record turntable makes $100$ revolutions per minute and it plays during $24$ minutes and $30$ seconds. The recorded line over the disk is a spiral with a diameter that decreases uniformly from $29$cm to $11.5$cm. Compute the length of the recorded line.

2019 Poland - Second Round, 6

Tags: angle , length , geometry
Let $X$ be a point lying in the interior of the acute triangle $ABC$ such that \begin{align*} \sphericalangle BAX = 2\sphericalangle XBA \ \ \ \ \hbox{and} \ \ \ \ \sphericalangle XAC = 2\sphericalangle ACX. \end{align*} Denote by $M$ the midpoint of the arc $BC$ of the circumcircle $(ABC)$ containing $A$. Prove that $XM=XA$.

Kvant 2023, M2767

It is easy to prove that in a right triangle the sum of the radii of the incircle and three excircles is equal to the perimeter. Prove that the opposite statement is also true. [i]Proposed by I. Weinstein[/i]

2013 Singapore Senior Math Olympiad, 1

In the Triangle ABC AB>AC, the extension of the altitude AD with D lying inside BC intersects the circum-circle of the Triangle ABC at P. The circle through P and tangent to BC at D intersects the circum-circle of Triangle ABC at Q distinct from P with PQ=DQ. Prove that AD=BD-DC

2023 Sharygin Geometry Olympiad, 8

A triangle $ABC$ $(a>b>c)$ is given. Its incenter $I$ and the touching points $K, N$ of the incircle with $BC$ and $AC$ respectively are marked. Construct a segment with length $a-c$ using only a ruler and drawing at most three lines.

2022 Bulgarian Spring Math Competition, Problem 11.2

Tags: length , geometry
A circle through the vertices $A$ and $B$ of $\triangle ABC$ intersects segments $AC$ and $BC$ at points $P$ and $Q$ respectively. If $AQ=AC$, $\angle BAQ=\angle CBP$ and $AB=(\sqrt{3}+1)PQ$, find the measures of the angles of $\triangle ABC$.

2013 German National Olympiad, 4

Let $ABCDEFGH$ be a cube of sidelength $a$ and such that $AG$ is one of the space diagonals. Consider paths on the surface of this cube. Then determine the set of points $P$ on the surface for which the shortest path from $P$ to $A$ and from $P$ to $G$ have the same length $l.$ Also determine all possible values of $l$ depending on $a.$

1971 IMO Longlists, 45

A broken line $A_1A_2 \ldots A_n$ is drawn in a $50 \times 50$ square, so that the distance from any point of the square to the broken line is less than $1$. Prove that its total length is greater than $1248.$

1971 IMO Shortlist, 14

A broken line $A_1A_2 \ldots A_n$ is drawn in a $50 \times 50$ square, so that the distance from any point of the square to the broken line is less than $1$. Prove that its total length is greater than $1248.$