This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 837

2007 Today's Calculation Of Integral, 238

Find $ \lim_{a\to\infty} \frac {1}{a^2}\int_0^a \log (1 \plus{} e^x)\ dx.$

1992 IMO Longlists, 74

Let $S = \{\frac{\pi^n}{1992^m} | m,n \in \mathbb Z \}.$ Show that every real number $x \geq 0$ is an accumulation point of $S.$

2011 Vietnam National Olympiad, 2

Tags: limit , algebra
Let $\langle x_n\rangle$ be a sequence of real numbers defined as \[x_1=1; x_n=\dfrac{2n}{(n-1)^2}\sum_{i=1}^{n-1}x_i\] Show that the sequence $y_n=x_{n+1}-x_n$ has finite limits as $n\to \infty.$

1977 Polish MO Finals, 1

Tags: algebra , limit , function
A function $h : \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and satisfies $h(ax) = bh(x)$ for all $x$, where $a$ and $b$ are given positive numbers and $0 \not = |a| \not = 1$. Suppose that $h'(0) \not = 0$ and the function $h'$ is continuous at $x = 0$. Prove that $a = b$ and that there is a real number $c$ such that $h(x) = cx$ for all $x$.

1999 VJIMC, Problem 2

Let $a,b\in\mathbb R$, $a\le b$. Assume that $f:[a,b]\to[a,b]$ satisfies $f(x)-f(y)\le|x-y|$ for every $x,y\in[a,b]$. Choose an $x_1\in[a,b]$ and define $$x_{n+1}=\frac{x_n+f(x_n)}2,\qquad n=1,2,3,\ldots.$$Show that $\{x_n\}^\infty_{n=1}$ converges to some fixed point of $f$.

2020 LIMIT Category 1, 12

$q$ is the smallest rational number having the following properties: (i) $q>\frac{31}{17}$ (ii) when $q$ is written in its reduced form $\frac{a}{b}$, then $b<17$ As in part (ii) above, find $a+b$.

1970 IMO, 3

The real numbers $a_0,a_1,a_2,\ldots$ satisfy $1=a_0\le a_1\le a_2\le\ldots. b_1,b_2,b_3,\ldots$ are defined by $b_n=\sum_{k=1}^n{1-{a_{k-1}\over a_k}\over\sqrt a_k}$. [b]a.)[/b] Prove that $0\le b_n<2$. [b]b.)[/b] Given $c$ satisfying $0\le c<2$, prove that we can find $a_n$ so that $b_n>c$ for all sufficiently large $n$.

2020 Jozsef Wildt International Math Competition, W10

Let there be $(a_n)_{n\ge1},(b_n)_{n\ge1},a_n,b_n\in\mathbb R^*_+=(0,\infty)$ such that $\lim_{n\to\infty}a_n=a\in\mathbb R^*_+$ and $(b_n)_{n\ge1}$ is a bounded sequence. If $(x_n)_{n\ge1}$, $x_n=\prod_{k=1}^n(ka_h+b_h)$ find: $$\lim_{n\to\infty}\left(\sqrt[n+1]{x_{n+1}}-\sqrt[n]{x_n}\right)$$ [i]Proposed by D.M. Bătinețu-Giurgiu and Daniel Sitaru[/i]

Today's calculation of integrals, 877

Let $f(x)=\lim_{n\to\infty} \frac{\sin^{n+2}x+\cos^{n+2}x}{\sin^n x+\cos^n x}$ for $0\leq x\leq \frac{\pi}2.$ Evaluate $\int_0^{\frac{\pi}2} f(x)\ dx.$

2003 Vietnam National Olympiad, 3

Let $\mathcal{F}$ be the set of all functions $f : (0,\infty)\to (0,\infty)$ such that $f(3x) \geq f( f(2x) )+x$ for all $x$. Find the largest $A$ such that $f(x) \geq A x$ for all $f\in\mathcal{F}$ and all $x$.

1978 Austrian-Polish Competition, 8

For any positive integer $k$ consider the sequence $$a_n=\sqrt{k+\sqrt{k+\dots+\sqrt k}},$$ where there are $n$ square-root signs on the right-hand side. (a) Show that the sequence converges, for every fixed integer $k\ge 1$. (b) Find $k$ such that the limit is an integer. Furthermore, prove that if $k$ is odd, then the limit is irrational.

2020 LIMIT Category 2, 11

Tags: limit , geometry
$\triangle PQR$ is isosceles and right angled at $R$. Point $A$ is inside $\triangle PQR$, such that $PA=11, QA=7$, and $RA=6$. Legs $\overline{PR}$ and $\overline{QR}$ have length $s=\sqrt{a+b\sqrt{2}}$, where $a$ and $b$ are positive integers. What is $a+b$?

2020 LIMIT Category 1, 18

Tags: limit , geometry
Let $\triangle ABC$ be a right triangle with $\angle C=90^{\circ}$. Two squares $S_1$ and $S_2$ are inscribed in the triangle $ABC$ such that $S_1$ and $ABC$ share a common vertex $C$ and $S_2$ has one of its sides on $AB$. Suppose that $\text{Area}(S_1)=1+\text{Area}(S_2)=441$, then calculate $AC+BC$ (A)$400$ (B)$420$ (C)$441$ (D)$462$

2011 Indonesia TST, 2

Find the limit, when $n$ tends to the infinity, of $$\frac{\sum_{k=0}^{n} {{2n} \choose {2k}} 3^k} {\sum_{k=0}^{n-1} {{2n} \choose {2k+1}} 3^k}$$

2011 AMC 12/AHSME, 9

Two real numbers are selected independently at random from the interval [-20, 10]. What is the probability that the product of those numbers is greater than zero? $ \textbf{(A)}\ \frac{1}{9} \qquad \textbf{(B)}\ \frac{1}{3} \qquad \textbf{(C)}\ \frac{4}{9} \qquad \textbf{(D)}\ \frac{5}{9} \qquad \textbf{(E)}\ \frac{2}{3} $

1963 Putnam, B5

Let $(a_n )$ be a sequence of real numbers satisfying the inequalities $$ 0 \leq a_k \leq 100a_n \;\; \text{for} \;\, n \leq k \leq 2n \;\; \text{and} \;\; n=1,2,\ldots,$$ and such that the series $$\sum_{n=0}^{\infty} a_n $$ converges. Prove that $$\lim_{n\to \infty} n a_n = 0.$$

2020 LIMIT Category 2, 17

Let $a_n$ denote the angle opposite to the side of length $4n^2$ units in an integer right angled triangle with lengths of sides of the triangle being $4n^2, 4n^4+1$ and $4n^4-1$ where $n \in N$. Then find the value of $\lim_{p \to \infty} \sum_{n=1}^p a_n$ (A) $\pi/2$ (B) $\pi/4$ (C) $\pi $ (D) $\pi/3$

2009 Today's Calculation Of Integral, 502

(1) For $ 0 < x < 1$, prove that $ (\sqrt {2} \minus{} 1)x \plus{} 1 < \sqrt {x \plus{} 1} < \sqrt {2}.$ (2) Find $ \lim_{a\rightarrow 1 \minus{} 0} \frac {\int_a^1 x\sqrt {1 \minus{} x^2}\ dx}{(1 \minus{} a)^{\frac 32}}$.

2005 IMC, 5

5) f twice cont diff, $|f''(x)+2xf'(x)+(x^{2}+1)f(x)|\leq 1$. prove $\lim_{x\rightarrow +\infty} f(x) = 0$

2000 Putnam, 4

Show that the improper integral \[ \lim_{B \rightarrow \infty} \displaystyle\int_{0}^{B} \sin (x) \sin (x^2) dx \] converges.

2012 Vietnam National Olympiad, 1

Tags: limit , algebra
Define a sequence $\{x_n\}$ as: $\left\{\begin{aligned}& x_1=3 \\ & x_n=\frac{n+2}{3n}(x_{n-1}+2)\ \ \text{for} \ n\geq 2.\end{aligned}\right.$ Prove that this sequence has a finite limit as $n\to+\infty.$ Also determine the limit.

2014 China Team Selection Test, 5

Let $a_1<a_2<...<a_t$ be $t$ given positive integers where no three form an arithmetic progression. For $k=t,t+1,...$ define $a_{k+1}$ to be the smallest positive integer larger than $a_k$ satisfying the condition that no three of $a_1,a_2,...,a_{k+1}$ form an arithmetic progression. For any $x\in\mathbb{R}^+$ define $A(x)$ to be the number of terms in $\{a_i\}_{i\ge 1}$ that are at most $x$. Show that there exist $c>1$ and $K>0$ such that $A(x)\ge c\sqrt{x}$ for any $x>K$.

2010 Putnam, A6

Let $f:[0,\infty)\to\mathbb{R}$ be a strictly decreasing continuous function such that $\lim_{x\to\infty}f(x)=0.$ Prove that $\displaystyle\int_0^{\infty}\frac{f(x)-f(x+1)}{f(x)}\,dx$ diverges.

2015 Vietnam National Olympiad, 1

Tags: calculus , algebra , limit
Given a non negative real $a$ and a sequence $(u_n)$ defined by \[ \begin{cases} u_1=3\\ u_{n+1}=\frac{u_n}{2}+\frac{n^2}{4n^2+a}\sqrt{u_n^2+3} \end{cases} \] a) Prove that for $a=0$, the sequence is convergent and find its limit. b) For $a\in [0,1]$, prove that the sequence if convergent.

2012 Today's Calculation Of Integral, 787

Take two points $A\ (-1,\ 0),\ B\ (1,\ 0)$ on the $xy$-plane. Let $F$ be the figure by which the whole points $P$ on the plane satisfies $\frac{\pi}{4}\leq \angle{APB}\leq \pi$ and the figure formed by $A,\ B$. Answer the following questions: (1) Illustrate $F$. (2) Find the volume of the solid generated by a rotation of $F$ around the $x$-axis.