Found problems: 837
2012 Today's Calculation Of Integral, 786
For each positive integer $n$, define $H_n(x)=(-1)^ne^{x^2}\frac{d^n}{dx^n}e^{-x^2}.$
(1) Find $H_1(x),\ H_2(x),\ H_3(x)$.
(2) Express $\frac{d}{dx}H_n(x)$ interms of $H_n(x),\ H_{n+1}(x).$ Then prove that $H_n(x)$ is a polynpmial with degree $n$ by induction.
(3) Let $a$ be real number. For $n\geq 3$, express $S_n(a)=\int_0^a xH_n(x)e^{-x^2}dx$ in terms of $H_{n-1}(a),\ H_{n-2}(a),\ H_{n-2}(0)$.
(4) Find $\lim_{a\to\infty} S_6(a)$.
If necessary, you may use $\lim_{x\to\infty}x^ke^{-x^2}=0$ for a positive integer $k$.
1954 Putnam, A5
Let $f(x)$ be a real-valued function defined for $0<x<1.$ If
$$ \lim_{x \to 0} f(x) =0 \;\; \text{and} \;\; f(x) - f \left( \frac{x}{2} \right) =o(x),$$
prove that $f(x) =o(x),$ where we use the O-notation.
1962 Miklós Schweitzer, 3
Let $ A$ and $ B$ be two Abelian groups, and define the sum of two homomorphisms $ \eta$ and $ \chi$ from $ A$ to $ B$ by \[ a( \eta\plus{}\chi)\equal{}a\eta\plus{}a\chi \;\textrm{for all}\ \;a \in A\ .\] With this addition, the set of homomorphisms from $ A$ to $ B$ forms an Abelian group $ H$. Suppose now that $ A$ is a $ p$-group ( $ p$ a prime number). Prove that in this case $ H$ becomes a topological group under the topology defined by taking the subgroups $ p^kH \;(k\equal{}1,2,...)$ as a neighborhood base of $ 0$. Prove that $ H$ is complete in this topology and that every connected component of $ H$ consists of a single element. When is $ H$ compact in this topology? [L. Fuchs]
2010 Today's Calculation Of Integral, 604
Let $r$ be a positive integer. Determine the value of $a$ for which the limit value $\lim_{n\to\infty} \frac{\sum_{k=1}^n k^r}{n^a} $ has a non zero finite value, then find the limit value.
1956 Tokyo Institute of Technology entrance exam
2010 Putnam, B5
Is there a strictly increasing function $f:\mathbb{R}\to\mathbb{R}$ such that $f'(x)=f(f(x))$ for all $x?$
1995 Turkey Team Selection Test, 3
The sequence $\{x_n\}$ of real numbers is defined by
\[x_1=1 \quad\text{and}\quad x_{n+1}=x_n+\sqrt[3]{x_n} \quad\text{for}\quad n\geq 1.\]
Show that there exist real numbers $a, b$ such that $\lim_{n \rightarrow \infty}\frac{x_n}{an^b} = 1$.
1996 VJIMC, Problem 3
Let $\operatorname{cif}(x)$ denote the sum of the digits of the number $x$ in the decimal system. Put $a_1=1997^{1996^{1997}}$, and $a_{n+1}=\operatorname{cif}(a_n)$ for every $n>0$. Find $\lim_{n\to\infty}a_n$.
2020 LIMIT Category 2, 3
Given that the equation $(m^2-12)x^4-8x^2-4=0$ has no real roots, then the largest value of $m$ is $p\sqrt{q}$, where $p$ and $q$ are natural numbers, $q$ is square-free. Determine $p+q$.
(A)$4$
(B)$5$
(C)$3$
(D)$6$
2020 Jozsef Wildt International Math Competition, W51
Consider the sequence of real numbers $(a_n)_{n\ge1}$ such that
$$\lim_{n\to\infty}\frac1{n^r}\sum_{k=1}^n\frac{a_k}k=l\in\mathbb R,r\in\mathbb N^*$$
Show that:
$$\lim_{n\to\infty}\left(\dfrac{\displaystyle\sum_{p=n+1}^{2n}\sum_{k=1}^p\sum_{i=1}^k\frac{a_i}{p\cdot i}}{n^{r+1}}\right)=l\left(\frac{2^{r+1}}{r(r+1)}-\frac{2^r}{(r+1)^2}\right)$$
[i]Proposed by Florin Stănescu and Şerban Cioculescu[/i]
2009 Today's Calculation Of Integral, 427
Let $ a$ be a positive real number, in Euclidean space, consider the two disks:
$ D_1\equal{}\{(x,\ y,\ z)| x^2\plus{}y^2\leq 1,\ z\equal{}a\}$,
$ D_2\equal{}\{(x,\ y,\ z)| x^2\plus{}y^2\leq 1,\ z\equal{}\minus{}a\}$.
Let $ D_1$ overlap to $ D_2$ by rotating $ D_1$ about the $ y$ axis by $ 180^\circ$. Note that the rotational direction is supposed to be the direction such that we would lean the postive part of the $ z$ axis to into the direction of the postive part of $ x$ axis. Let denote $ E$ the part in which $ D_1$ passes while the rotation, let denote $ V(a)$ the volume of $ E$ and let $ W(a)$ be the volume of common part of $ E$ and $ \{(x,\ y,\ z)|x\geq 0\}$.
(1) Find $ W(a)$.
(2) Find $ \lim_{a\rightarrow \infty} V(a)$.
2005 District Olympiad, 2
Let $f:[0,1]\to\mathbb{R}$ be a continuous function and let $\{a_n\}_n$, $\{b_n\}_n$ be sequences of reals such that
\[ \lim_{n\to\infty} \int^1_0 | f(x) - a_nx - b_n | dx = 0 . \]
Prove that:
a) The sequences $\{a_n\}_n$, $\{b_n\}_n$ are convergent;
b) The function $f$ is linear.
1961 Putnam, B1
Let $a_1 , a_2 , a_3 ,\ldots$ be a sequence of positive real numbers, define $s_n = \frac{a_1 +a_2 +\ldots+a_n }{n}$ and $r_n = \frac{a_{1}^{-1} +a_{2}^{-1} +\ldots+a_{n}^{-1} }{n}.$ Given that $\lim_{n\to \infty} s_n $ and $\lim_{n\to \infty} r_n $ exist, prove that the product of these limits is not less than $1.$
1983 IMO Longlists, 46
Let $f$ be a real-valued function defined on $I = (0,+\infty)$ and having no zeros on $I$. Suppose that
\[\lim_{x \to +\infty} \frac{f'(x)}{f(x)}=+\infty.\]
For the sequence $u_n = \ln \left| \frac{f(n+1)}{f(n)} \right|$, prove that $u_n \to +\infty$ as $n \to +\infty.$
2024 Brazil Undergrad MO, 6
For each positive integer \( n \), list in increasing order all irreducible fractions in the interval \([0, 1]\) that have a positive denominator less than or equal to \( n \):
\[
0 = \frac{p_0}{q_0} < \frac{1}{n} = \frac{p_1}{q_1} < \cdots < \frac{1}{1} = \frac{p_{M(n)}}{q_{M(n)}}.
\]
Let \( k \) be a positive integer. We define, for each \( n \) such that \( M(n) \geq k - 1 \),
\[
f_k(n) = \min \left\{ \sum_{s=0}^{k-1} q_{j+s} : 0 \leq j \leq M(n) - k + 1 \right\}.
\]
Determine, in function of \( k \),
\[
\lim_{n \to \infty} \frac{f_k(n)}{n}.
\]
For example, if \( n = 4 \), the enumeration is
\[
\frac{0}{1} < \frac{1}{4} < \frac{1}{3} < \frac{1}{2} < \frac{2}{3} < \frac{3}{4} < \frac{1}{1},
\]
where \( p_0 = 0, p_1 = 1, p_2 = 1, p_3 = 1, p_4 = 2, p_5 = 3, p_6 = 1 \) and \( q_0 = 1, q_1 = 4, q_2 = 3, q_3 = 2, q_4 = 3, q_5 = 4, q_6 = 1 \). In this case, we have \( f_1(4) = 1, f_2(4) = 5, f_3(4) = 8, f_4(4) = 10, f_5(4) = 13, f_6(4) = 17 \), and \( f_7(4) = 18 \).
2012 Today's Calculation Of Integral, 824
In the $xy$-plane, for $a>1$ denote by $S(a)$ the area of the figure bounded by the curve $y=(a-x)\ln x$ and the $x$-axis.
Find the value of integer $n$ for which $\lim_{a\rightarrow \infty} \frac{S(a)}{a^n\ln a}$ is non-zero real number.
2025 District Olympiad, P3
Let $f:[0,\infty)\rightarrow [0,\infty)$ be a continuous and bijective function, such that $$\lim_{x\rightarrow\infty}\frac{f^{-1}(f(x)/x)}{x}=1.$$
[list=a]
[*] Show that $\lim_{x\rightarrow\infty}\frac{f(x)}{x}=\infty$ and $\lim_{x\rightarrow\infty}\frac{f^{-1}(ax)}{f^{-1}(x)}=1$ for any $a>0$.
[*] Give an example of function which satisfies the hypothesis.
2014 VJIMC, Problem 1
Let $f:(0,\infty)\to\mathbb R$ be a differentiable function. Assume that
$$\lim_{x\to\infty}\left(f(x)+\frac{f'(x)}x\right)=0.$$Prove that
$$\lim_{x\to\infty}f(x)=0.$$
2007 Today's Calculation Of Integral, 235
Show that a function $ f(x)\equal{}\int_{\minus{}1}^1 (1\minus{}|\ t\ |)\cos (xt)\ dt$ is continuous at $ x\equal{}0$.
2010 Contests, 4
A real valued function $f$ is defined on the interval $(-1,2)$. A point $x_0$ is said to be a fixed point of $f$ if $f(x_0)=x_0$. Suppose that $f$ is a differentiable function such that $f(0)>0$ and $f(1)=1$. Show that if $f'(1)>1$, then $f$ has a fixed point in the interval $(0,1)$.
2013 India IMO Training Camp, 1
Find all functions $f$ from the set of real numbers to itself satisfying
\[ f(x(1+y)) = f(x)(1 + f(y)) \]
for all real numbers $x, y$.
2010 ISI B.Stat Entrance Exam, 4
A real valued function $f$ is defined on the interval $(-1,2)$. A point $x_0$ is said to be a fixed point of $f$ if $f(x_0)=x_0$. Suppose that $f$ is a differentiable function such that $f(0)>0$ and $f(1)=1$. Show that if $f'(1)>1$, then $f$ has a fixed point in the interval $(0,1)$.
1970 IMO Longlists, 49
For $n \in \mathbb N$, let $f(n)$ be the number of positive integers $k \leq n$ that do not contain the digit $9$. Does there exist a positive real number $p$ such that $\frac{f(n)}{n} \geq p$ for all positive integers $n$?
2006 Moldova National Olympiad, 11.1
Let $n\in\mathbb{N}^*$. Prove that \[ \lim_{x\to 0}\frac{ \displaystyle (1+x^2)^{n+1}-\prod_{k=1}^n\cos kx}{ \displaystyle x\sum_{k=1}^n\sin kx}=\frac{2n^2+n+12}{6n}. \]
2004 Putnam, B6
Let $A$ be a nonempty set of positive integers, and let $N(x)$ denote the number of elements of $A$ not exceeding $x$. Let $B$ denote the set of positive integers $b$ that can be written in the form $b=a-a^{\prime}$ with $a\in A$ and $a^{\prime}\in A$. Let $b_1<b_2<\cdots$ be the members of $B$, listed in increasing order. Show that if the sequence $b_{i+1}-b_i$ is unbounded, then $\lim_{x\to \infty}\frac{N(x)}{x}=0$.
2008 Alexandru Myller, 3
Let be a $ \beta >1. $ Calculate $ \lim_{n\to\infty} \frac{k(n)}{n} ,$ where $ k(n) $ is the smallest natural number that satisfies the inequality $ (1+n)^k\ge n^k\beta . $
[i]Neculai Hârţan[/i]