Found problems: 913
2007 Today's Calculation Of Integral, 170
Let $a,\ b$ be constant numbers such that $a^{2}\geq b.$
Find the following definite integrals.
(1) $I=\int \frac{dx}{x^{2}+2ax+b}$
(2) $J=\int \frac{dx}{(x^{2}+2ax+b)^{2}}$
2007 ITest, 38
Find the largest positive integer that is equal to the cube of the sum of its digits.
2010 Putnam, B5
Is there a strictly increasing function $f:\mathbb{R}\to\mathbb{R}$ such that $f'(x)=f(f(x))$ for all $x?$
MathLinks Contest 7th, 5.3
If $ a\geq b\geq c\geq d > 0$ such that $ abcd\equal{}1$, then prove that \[ \frac 1{1\plus{}a} \plus{} \frac 1{1\plus{}b} \plus{} \frac 1{1\plus{}c} \geq \frac {3}{1\plus{}\sqrt[3]{abc}}.\]
2010 Today's Calculation Of Integral, 634
Prove that :
\[\int_1^{\sqrt{e}} (\ln x)^n dx=(-1)^{n-1}n!+\sqrt{e}\sum_{m=0}^{n} (-1)^{n-m}\frac{n!}{m!}\left(\frac 12\right)^m\ (n=1,\ 2,\ \cdots)\]
[i]2010 Miyazaki University entrance exam/Medicine[/i]
2005 China National Olympiad, 4
The sequence $\{a_n\}$ is defined by: $a_1=\frac{21}{16}$, and for $n\ge2$,\[ 2a_n-3a_{n-1}=\frac{3}{2^{n+1}}. \]Let $m$ be an integer with $m\ge2$. Prove that: for $n\le m$, we have\[ \left(a_n+\frac{3}{2^{n+3}}\right)^{\frac{1}{m}}\left(m-\left(\frac{2}{3}\right)^{{\frac{n(m-1)}{m}}}\right)<\frac{m^2-1}{m-n+1}. \]
2002 District Olympiad, 3
Let be two real numbers $ a,b, $ that satisfy $ 3^a+13^b=17^a $ and $ 5^a+7^b=11^b. $
Show that $ a<b. $
Indonesia MO Shortlist - geometry, g3.3
Let $ABCD$ be a trapezoid (quadrilateral with one pair of parallel sides) such that $AB < CD$. Suppose that $AC$ and $BD$ meet at $E$ and $AD$ and $BC$ meet at $F$. Construct the parallelograms $AEDK$ and $BECL$. Prove that $EF$ passes through the midpoint of the segment $KL$.
1983 IMO Longlists, 46
Let $f$ be a real-valued function defined on $I = (0,+\infty)$ and having no zeros on $I$. Suppose that
\[\lim_{x \to +\infty} \frac{f'(x)}{f(x)}=+\infty.\]
For the sequence $u_n = \ln \left| \frac{f(n+1)}{f(n)} \right|$, prove that $u_n \to +\infty$ as $n \to +\infty.$
2003 District Olympiad, 4
Let $\displaystyle a,b,c,d \in \mathbb R$ such that $\displaystyle a>c>d>b>1$ and $\displaystyle ab>cd$.
Prove that $\displaystyle f : \left[ 0,\infty \right) \to \mathbb R$, defined through
\[ \displaystyle f(x) = a^x+b^x-c^x-d^x, \, \forall x \geq 0 , \]
is strictly increasing.
2012 Today's Calculation Of Integral, 824
In the $xy$-plane, for $a>1$ denote by $S(a)$ the area of the figure bounded by the curve $y=(a-x)\ln x$ and the $x$-axis.
Find the value of integer $n$ for which $\lim_{a\rightarrow \infty} \frac{S(a)}{a^n\ln a}$ is non-zero real number.
2019 PUMaC Team Round, 11
The game Prongle is played with a special deck of cards: on each card is a nonempty set of distinct colors. No two cards in the deck contain the exact same set of colors. In this game, a “Prongle” is a set of at least $2$ cards such that each color is on an even number of cards in the set. Let k be the maximum possible number of prongles in a set of $2019$ cards. Find $\lfloor \log 2 (k) \rfloor$.
2014 Contests, 1
Let $n$ be a positive integer. Let $\mathcal{F}$ be a family of sets that contains more than half of all subsets of an $n$-element set $X$. Prove that from $\mathcal{F}$ we can select $\lceil \log_2 n \rceil + 1$ sets that form a separating family on $X$, i.e., for any two distinct elements of $X$ there is a selected set containing exactly one of the two elements.
Moderator says: http://www.artofproblemsolving.com/Forum/viewtopic.php?f=41&t=614827&hilit=Schweitzer+2014+separating
2009 Today's Calculation Of Integral, 496
Evaluate $ \int_{ \minus{} 1}^ {a^2} \frac {1}{x^2 \plus{} a^2}\ dx\ (a > 0).$
You may not use $ \tan ^{ \minus{} 1} x$ or Complex Integral here.
2019 Korea USCM, 5
A sequence $\{a_n\}_{n\geq 1}$ is defined by a recurrence relation
$$a_1 = 1,\quad a_{n+1} = \log \frac{e^{a_n}-1}{a_n}$$
And a sequence $\{b_n\}_{n\geq 1}$ is defined as $b_n = \prod\limits_{i=1}^n a_i$. Evaluate an infinite series $\sum\limits_{n=1}^\infty b_n$.
2012 ELMO Shortlist, 2
Determine whether it's possible to cover a $K_{2012}$ with
a) 1000 $K_{1006}$'s;
b) 1000 $K_{1006,1006}$'s.
[i]David Yang.[/i]
2004 AIME Problems, 12
Let $S$ be the set of ordered pairs $(x, y)$ such that $0<x\le 1$, $0<y\le 1$, and $\left[\log_2{\left(\frac 1x\right)}\right]$ and $\left[\log_5{\left(\frac 1y\right)}\right]$ are both even. Given that the area of the graph of $S$ is $m/n$, where $m$ and $n$ are relatively prime positive integers, find $m+n$. The notation $[z]$ denotes the greatest integer that is less than or equal to $z$.
2010 Today's Calculation Of Integral, 627
Evaluate $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{(2\sin \theta +1)\cos ^ 3 \theta}{(\sin ^ 2 \theta +1)^2}d\theta .$
[i]Proposed by kunny[/i]
2006 Pre-Preparation Course Examination, 5
Powers of $2$ in base $10$ start with $3$ or $4$ more frequently? What is their state in base $3$? First write down an exact form of the question.
1989 AMC 12/AHSME, 15
Hi guys,
I was just reading over old posts that I made last year ( :P ) and saw how much the level of Getting Started became harder. To encourage more people from posting, I decided to start a Problem of the Day. This is how I'll conduct this:
1. In each post (not including this one since it has rules, etc) everyday, I'll post the problem. I may post another thread after it to give hints though.
2. Level of problem.. This is VERY important. All problems in this thread will be all AHSME or problems similar to this level. No AIME. Some AHSME problems, however, that involve tough insight or skills will not be posted. The chosen problems will be usually ones that everyone can solve after working. Calculators are allowed when you solve problems but it is NOT necessary.
3. Response.. All you have to do is simply solve the problem and post the solution. There is no credit given or taken away if you get the problem wrong. This isn't like other threads where the number of problems you get right or not matters. As for posting, post your solutions here in this thread. Do NOT PM me. Also, here are some more restrictions when posting solutions:
A. No single answer post. It doesn't matter if you put hide and say "Answer is ###..." If you don't put explanation, it simply means you cheated off from some other people. I've seen several posts that went like "I know the answer" and simply post the letter. What is the purpose of even posting then? Huh?
B. Do NOT go back to the previous problem(s). This causes too much confusion.
C. You're FREE to give hints and post different idea, way or answer in some cases in problems. If you see someone did wrong or you don't understand what they did, post here. That's what this thread is for.
4. Main purpose.. This is for anyone who visits this forum to enjoy math. I rememeber when I first came into this forum, I was poor at math compared to other people. But I kindly got help from many people such as JBL, joml88, tokenadult, and many other people that would take too much time to type. Perhaps without them, I wouldn't be even a moderator in this forum now. This site clearly made me to enjoy math more and more and I'd like to do the same thing. That's about the rule.. Have fun problem solving!
Next post will contain the Day 1 Problem. You can post the solutions until I post one. :D
2006 AMC 12/AHSME, 20
Let $ x$ be chosen at random from the interval $ (0,1)$. What is the probability that
\[ \lfloor\log_{10}4x\rfloor \minus{} \lfloor\log_{10}x\rfloor \equal{} 0?
\]Here $ \lfloor x\rfloor$ denotes the greatest integer that is less than or equal to $ x$.
$ \textbf{(A) } \frac 18 \qquad \textbf{(B) } \frac 3{20} \qquad \textbf{(C) } \frac 16 \qquad \textbf{(D) } \frac 15 \qquad \textbf{(E) } \frac 14$
2005 Harvard-MIT Mathematics Tournament, 5
Calculate \[ \lim_{x \to 0^+} \left( x^{x^x} - x^x \right). \]
2009 Today's Calculation Of Integral, 507
Evaluate
\[ \int_e^{e^{2009}} \frac{1}{x}\left\{1\plus{}\frac{1\minus{}\ln x}{\ln x\cdot \ln \frac{x}{\ln (\ln x)}}\right\}\ dx\]
1991 IMTS, 1
For every positive integer $n$, form the number $n/s(n)$, where $s(n)$ is the sum of digits of $n$ in base 10. Determine the minimum value of $n/s(n)$ in each of the following cases:
(i) $10 \leq n \leq 99$
(ii) $100 \leq n \leq 999$
(iii) $1000 \leq n \leq 9999$
(iv) $10000 \leq n \leq 99999$
2008 AMC 12/AHSME, 23
The sum of the base-$ 10$ logarithms of the divisors of $ 10^n$ is $ 792$. What is $ n$?
$ \textbf{(A)}\ 11\qquad
\textbf{(B)}\ 12\qquad
\textbf{(C)}\ 13\qquad
\textbf{(D)}\ 14\qquad
\textbf{(E)}\ 15$