This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 50

2005 AMC 12/AHSME, 25

Six ants simultaneously stand on the six vertices of a regular octahedron, with each ant at a different vertex. Simultaneously and independently, each ant moves from its vertex to one of the four adjacent vertices, each with equal probability. What is the probability that no two ants arrive at the same vertex? $ \textbf{(A)}\ \frac {5}{256} \qquad \textbf{(B)}\ \frac {21}{1024} \qquad \textbf{(C)}\ \frac {11}{512} \qquad \textbf{(D)}\ \frac {23}{1024} \qquad \textbf{(E)}\ \frac {3}{128}$

2010 Princeton University Math Competition, 7

A cuboctahedron is a solid with 6 square faces and 8 equilateral triangle faces, with each edge adjacent to both a square and a triangle (see picture). Suppose the ratio of the volume of an octahedron to a cuboctahedron with the same side length is $r$. Find $100r^2$. [asy] // dragon96, replacing // [img]http://i.imgur.com/08FbQs.png[/img] size(140); defaultpen(linewidth(.7)); real alpha=10, x=-0.12, y=0.025, r=1/sqrt(3); path hex=rotate(alpha)*polygon(6); pair A = shift(x,y)*(r*dir(330+alpha)), B = shift(x,y)*(r*dir(90+alpha)), C = shift(x,y)*(r*dir(210+alpha)); pair X = (-A.x, -A.y), Y = (-B.x, -B.y), Z = (-C.x, -C.y); int i; pair[] H; for(i=0; i<6; i=i+1) { H[i] = dir(alpha+60*i);} fill(X--Y--Z--cycle, rgb(204,255,255)); fill(H[5]--Y--Z--H[0]--cycle^^H[2]--H[3]--X--cycle, rgb(203,153,255)); fill(H[1]--Z--X--H[2]--cycle^^H[4]--H[5]--Y--cycle, rgb(255,203,153)); fill(H[3]--X--Y--H[4]--cycle^^H[0]--H[1]--Z--cycle, rgb(153,203,255)); draw(hex^^X--Y--Z--cycle); draw(H[1]--B--H[2]^^H[3]--C--H[4]^^H[5]--A--H[0]^^A--B--C--cycle, linewidth(0.6)+linetype("5 5")); draw(H[0]--Z--H[1]^^H[2]--X--H[3]^^H[4]--Y--H[5]);[/asy]

1989 AMC 12/AHSME, 26

A regular octahedron is formed by joining the centers of adjoining faces of a cube. The ratio of the volume of the octahedron to the volume of the cube is $ \textbf{(A)}\ \frac{\sqrt{3}}{12} \qquad\textbf{(B)}\ \frac{\sqrt{6}}{16} \qquad\textbf{(C)}\ \frac{1}{6} \qquad\textbf{(D)}\ \frac{\sqrt{2}}{8} \qquad\textbf{(E)}\ \frac{1}{4} $

1981 Brazil National Olympiad, 6

The centers of the faces of a cube form a regular octahedron of volume $V$. Through each vertex of the cube we may take the plane perpendicular to the long diagonal from the vertex. These planes also form a regular octahedron. Show that its volume is $27V$.

1984 Polish MO Finals, 3

Let $W$ be a regular octahedron and $O$ be its center. In a plane $P$ containing $O$ circles $k_1(O,r_1)$ and $k_2(O,r_2)$ are chosen so that $k_1 \subset P\cap W \subset k_2$. Prove that $\frac{r_1}{r_2}\le \frac{\sqrt3}{2}$

2005 AIME Problems, 10

Given that $O$ is a regular octahedron, that $C$ is the cube whose vertices are the centers of the faces of $O$, and that the ratio of the volume of $O$ to that of $C$ is $\frac{m}{n}$, where $m$ and $n$ are relatively prime integers, find $m+n$.

1997 Dutch Mathematical Olympiad, 4

We look at an octahedron, a regular octahedron, having painted one of the side surfaces red and the other seven surfaces blue. We throw the octahedron like a die. The surface that comes up is painted: if it is red it is painted blue and if it is blue it is painted red. Then we throw the octahedron again and paint it again according to the above rule. In total we throw the octahedron $10$ times. How many different octahedra can we get after finishing the $10$th time? [i]Two octahedra are different if they cannot be converted into each other by rotation.[/i]

2016 Israel Team Selection Test, 3

Prove that there exists an ellipsoid touching all edges of an octahedron if and only if the octahedron's diagonals intersect. (Here an octahedron is a polyhedron consisting of eight triangular faces, twelve edges, and six vertices such that four faces meat at each vertex. The diagonals of an octahedron are the lines connecting pairs of vertices not connected by an edge).

1994 Flanders Math Olympiad, 3

Two regular tetrahedrons $A$ and $B$ are made with the 8 vertices of a unit cube. (this way is unique) What's the volume of $A\cup B$?

2016 HMNT, 16-18

16. Create a cube $C_1$ with edge length $1$. Take the centers of the faces and connect them to form an octahedron $O_1$. Take the centers of the octahedron’s faces and connect them to form a new cube $C_2$. Continue this process infinitely. Find the sum of all the surface areas of the cubes and octahedrons. 17. Let $p(x) = x^2 - x + 1$. Let $\alpha$ be a root of $p(p(p(p(x)))$. Find the value of $$(p(\alpha) - 1)p(\alpha)p(p(\alpha))p(p(p(\alpha))$$ 18. An $8$ by $8$ grid of numbers obeys the following pattern: 1) The first row and first column consist of all $1$s. 2) The entry in the $i$th row and $j$th column equals the sum of the numbers in the $(i - 1)$ by $(j - 1)$ sub-grid with row less than i and column less than $j$. What is the number in the 8th row and 8th column?

2012 Online Math Open Problems, 28

A fly is being chased by three spiders on the edges of a regular octahedron. The fly has a speed of $50$ meters per second, while each of the spiders has a speed of $r$ meters per second. The spiders choose their starting positions, and choose the fly's starting position, with the requirement that the fly must begin at a vertex. Each bug knows the position of each other bug at all times, and the goal of the spiders is for at least one of them to catch the fly. What is the maximum $c$ so that for any $r<c,$ the fly can always avoid being caught? [i]Author: Anderson Wang[/i]

2022 Sharygin Geometry Olympiad, 10.8

Let $ABCA'B'C'$ be a centrosymmetric octahedron (vertices $A$ and $A'$, $B$ and $B'$, $C$ and $C'$ are opposite) such that the sums of four planar angles equal $240^o$ for each vertex. The Torricelli points $T_1$ and $T_2$ of triangles $ABC$ and $A'BC$ are marked. Prove that the distances from $T_1$ and $T_2$ to $BC$ are equal.

2010 Princeton University Math Competition, 5

A cuboctahedron is a solid with 6 square faces and 8 equilateral triangle faces, with each edge adjacent to both a square and a triangle (see picture). Suppose the ratio of the volume of an octahedron to a cuboctahedron with the same side length is $r$. Find $100r^2$. [asy] // dragon96, replacing // [img]http://i.imgur.com/08FbQs.png[/img] size(140); defaultpen(linewidth(.7)); real alpha=10, x=-0.12, y=0.025, r=1/sqrt(3); path hex=rotate(alpha)*polygon(6); pair A = shift(x,y)*(r*dir(330+alpha)), B = shift(x,y)*(r*dir(90+alpha)), C = shift(x,y)*(r*dir(210+alpha)); pair X = (-A.x, -A.y), Y = (-B.x, -B.y), Z = (-C.x, -C.y); int i; pair[] H; for(i=0; i<6; i=i+1) { H[i] = dir(alpha+60*i);} fill(X--Y--Z--cycle, rgb(204,255,255)); fill(H[5]--Y--Z--H[0]--cycle^^H[2]--H[3]--X--cycle, rgb(203,153,255)); fill(H[1]--Z--X--H[2]--cycle^^H[4]--H[5]--Y--cycle, rgb(255,203,153)); fill(H[3]--X--Y--H[4]--cycle^^H[0]--H[1]--Z--cycle, rgb(153,203,255)); draw(hex^^X--Y--Z--cycle); draw(H[1]--B--H[2]^^H[3]--C--H[4]^^H[5]--A--H[0]^^A--B--C--cycle, linewidth(0.6)+linetype("5 5")); draw(H[0]--Z--H[1]^^H[2]--X--H[3]^^H[4]--Y--H[5]);[/asy]

2021 Oral Moscow Geometry Olympiad, 4

Points $STABCD$ in space form a convex octahedron with faces $SAB,SBC,SCD,SDA,TAB,TBC,TCD,TDA$ such that there exists a sphere that is tangent to all of its edges. Prove that $A,B,C,D$ lie in one plane.

2011 AMC 10, 24

Two distinct regular tetrahedra have all their vertices among the vertices of the same unit cube. What is the volume of the region formed by the intersection of the tetrahedra? $ \textbf{(A)}\ \frac{1}{12}\qquad\textbf{(B)}\ \frac{\sqrt{2}}{12}\qquad\textbf{(C)}\ \frac{\sqrt{3}}{12}\qquad\textbf{(D)}\ \frac{1}{6}\qquad\textbf{(E)}\ \frac{\sqrt{2}}{6} $

2010 Sharygin Geometry Olympiad, 25

For two different regular icosahedrons it is known that some six of their vertices are vertices of a regular octahedron. Find the ratio of the edges of these icosahedrons.

1970 Regional Competition For Advanced Students, 3

$E_1$ and $E_2$ are parallel planes and their distance is $p$. (a) How long is the seitenkante of the regular octahedron such that a side lies in $E_1$ and another in $E_2$? (b) $E$ is a plane between $E_1$ and $E_2$, parallel to $E_1$ and $E_2$, so that its distances from $E_1$ and $E_2$ are in ratio $1:2$ Draw the intersection figure of $E$ and the octahedron for $P=4\sqrt{\frac32}$ cm and justifies, why the that figure must look in such a way

1990 IMO Longlists, 61

Prove that we can fill in the three dimensional space with regular tetrahedrons and regular octahedrons, all of which have the same edge-lengths. Also find the ratio of the number of the regular tetrahedrons used and the number of the regular octahedrons used.

2014 PUMaC Combinatorics A, 3

You have three colors $\{\text{red}, \text{blue}, \text{green}\}$ with which you can color the faces of a regular octahedron (8 triangle sided polyhedron, which is two square based pyramids stuck together at their base), but you must do so in a way that avoids coloring adjacent pieces with the same color. How many different coloring schemes are possible? (Two coloring schemes are considered equivalent if one can be rotated to fit the other.)

2013 NZMOC Camp Selection Problems, 4

Let $C$ be a cube. By connecting the centres of the faces of $C$ with lines we form an octahedron $O$. By connecting the centers of each face of $O$ with lines we get a smaller cube $C'$. What is the ratio between the side length of $C$ and the side length of $C'$?

2012 CHMMC Spring, 2

A convex octahedron in Cartesian space contains the origin in its interior. Two of its vertices are on the $x$-axis, two are on the $y$-axis, and two are on the $z$-axis. One triangular face $F$ has side lengths $\sqrt{17}$, $\sqrt{37}$, $\sqrt{52}$. A second triangular face $F_0$ has side lengths $\sqrt{13}$, $\sqrt{29}$, $\sqrt{34}$. What is the minimum possible volume of the octahedron?

2009 AMC 12/AHSME, 22

A regular octahedron has side length $ 1$. A plane parallel to two of its opposite faces cuts the octahedron into the two congruent solids. The polygon formed by the intersection of the plane and the octahedron has area $ \frac {a\sqrt {b}}{c}$, where $ a$, $ b$, and $ c$ are positive integers, $ a$ and $ c$ are relatively prime, and $ b$ is not divisible by the square of any prime. What is $ a \plus{} b \plus{} c$? $ \textbf{(A)}\ 10\qquad \textbf{(B)}\ 11\qquad \textbf{(C)}\ 12\qquad \textbf{(D)}\ 13\qquad \textbf{(E)}\ 14$

2015 AMC 10, 17

The centers of the faces of the right rectangular prism shown below are joined to create an octahedron, What is the volume of the octahedron? [asy] import three; size(2inch); currentprojection=orthographic(4,2,2); draw((0,0,0)--(0,0,3),dashed); draw((0,0,0)--(0,4,0),dashed); draw((0,0,0)--(5,0,0),dashed); draw((5,4,3)--(5,0,3)--(5,0,0)--(5,4,0)--(0,4,0)--(0,4,3)--(0,0,3)--(5,0,3)); draw((0,4,3)--(5,4,3)--(5,4,0)); label("3",(5,0,3)--(5,0,0),W); label("4",(5,0,0)--(5,4,0),S); label("5",(5,4,0)--(0,4,0),SE); [/asy] $\textbf{(A) } \dfrac{75}{12} \qquad\textbf{(B) } 10 \qquad\textbf{(C) } 12 \qquad\textbf{(D) } 10\sqrt2 \qquad\textbf{(E) } 15 $

2012 AMC 12/AHSME, 19

A unit cube has vertices $P_1, P_2, P_3, P_4, P_1', P_2', P_3'$, and $P_4'$. Vertices $P_2, P_3$, and $P_4$ are adjacent to $P_1$, and for $1\leq i\leq 4$, vertices $P_i$ and $P_i'$ are opposite to each other. A regular octahedron has one vertex in each of the segments $P_1P_2, P_1P_3, P_1P_4, P_1'P_2', P_1'P_3'$, and $P_1'P_4'$. What is the octahedron's side length? [asy] import three; size(7.5cm); triple eye = (-4, -8, 3); currentprojection = perspective(eye); triple[] P = {(1, -1, -1), (-1, -1, -1), (-1, 1, -1), (-1, -1, 1), (1, -1, -1)}; // P[0] = P[4] for convenience triple[] Pp = {-P[0], -P[1], -P[2], -P[3], -P[4]}; // draw octahedron triple pt(int k){ return (3*P[k] + P[1])/4; } triple ptp(int k){ return (3*Pp[k] + Pp[1])/4; } draw(pt(2)--pt(3)--pt(4)--cycle, gray(0.6)); draw(ptp(2)--pt(3)--ptp(4)--cycle, gray(0.6)); draw(ptp(2)--pt(4), gray(0.6)); draw(pt(2)--ptp(4), gray(0.6)); draw(pt(4)--ptp(3)--pt(2), gray(0.6) + linetype("4 4")); draw(ptp(4)--ptp(3)--ptp(2), gray(0.6) + linetype("4 4")); // draw cube for(int i = 0; i < 4; ++i){ draw(P[1]--P[i]); draw(Pp[1]--Pp[i]); for(int j = 0; j < 4; ++j){ if(i == 1 || j == 1 || i == j) continue; draw(P[i]--Pp[j]); draw(Pp[i]--P[j]); } dot(P[i]); dot(Pp[i]); dot(pt(i)); dot(ptp(i)); } label("$P_1$", P[1], dir(P[1])); label("$P_2$", P[2], dir(P[2])); label("$P_3$", P[3], dir(-45)); label("$P_4$", P[4], dir(P[4])); label("$P'_1$", Pp[1], dir(Pp[1])); label("$P'_2$", Pp[2], dir(Pp[2])); label("$P'_3$", Pp[3], dir(-100)); label("$P'_4$", Pp[4], dir(Pp[4])); [/asy] $ \textbf{(A)}\ \frac{3\sqrt{2}}{4}\qquad\textbf{(B)}\ \frac{7\sqrt{6}}{16}\qquad\textbf{(C)}\ \frac{\sqrt{5}}{2}\qquad\textbf{(D)}\ \frac{2\sqrt{3}}{3}\qquad\textbf{(E)}\ \frac{\sqrt{6}}{2} $

1985 IMO Longlists, 28

[i]a)[/i] Let $M$ be the set of the lengths of the edges of an octahedron whose sides are congruent quadrangles. Prove that $M$ has at most three elements. [i]b)[/i] Let an octahedron whose sides are congruent quadrangles be given. Prove that each of these quadrangles has two equal sides meeting at a common vertex.