Found problems: 253
1994 Balkan MO, 1
An acute angle $XAY$ and a point $P$ inside the angle are given. Construct (using a ruler and a compass) a line that passes through $P$ and intersects the rays $AX$ and $AY$ at $B$ and $C$ such that the area of the triangle $ABC$ equals $AP^2$.
[i]Greece[/i]
2011 Today's Calculation Of Integral, 731
Let $C$ be the point of intersection of the tangent lines $l,\ m$ at $A(a,\ a^2),\ B(b,\ b^2)\ (a<b)$ on the parabola $y=x^2$ respectively.
When $C$ moves on the parabola $y=\frac 12 x^2-x-2$, find the minimum area bounded by 2 lines $l,\ m$ and the parabola $y=x^2$.
2011 Today's Calculation Of Integral, 675
In the coordinate plane with the origin $O$, consider points $P(t+2,\ 0),\ Q(0, -2t^2-2t+4)\ (t\geq 0).$ If the $y$-coordinate of $Q$ is nonnegative, then find the area of the region swept out by the line segment $PQ$.
[i]2011 Ritsumeikan University entrance exam/Pharmacy[/i]
2021 CCA Math Bonanza, L3.4
Compute the sum of $x^2+y^2$ over all four ordered pairs $(x,y)$ of real numbers satisfying $x=y^2-20$ and $y=x^2+x-21$.
[i]2021 CCA Math Bonanza Lightning Round #3.4[/i]
1991 National High School Mathematics League, 14
$O$ is the vertex of a parabola, $F$ is its focus. $PQ$ is a chord of the parabola. If $|OF|=a,|PQ|=b$, find the area of $\triangle OPQ$.
2020 Tournament Of Towns, 1
Consider two parabolas $y = x^2$ and $y = x^2 - 1$. Let $U$ be the set of points between the parabolas (including the points on the parabolas themselves). Does $U$ contain a line segment of length greater than $10^6$ ?
Alexey Tolpygo
2011 BMO TST, 1
The given parabola $y=ax^2+bx+c$ doesn't intersect the $X$-axis and passes from the points $A(-2,1)$ and $B(2,9)$. Find all the possible values of the $x$ coordinates of the vertex of this parabola.
2009 International Zhautykov Olympiad, 1
On the plane, a Cartesian coordinate system is chosen. Given points $ A_1,A_2,A_3,A_4$ on the parabola $ y \equal{} x^2$, and points $ B_1,B_2,B_3,B_4$ on the parabola $ y \equal{} 2009x^2$. Points $ A_1,A_2,A_3,A_4$ are concyclic, and points $ A_i$ and $ B_i$ have equal abscissas for each $ i \equal{} 1,2,3,4$.
Prove that points $ B_1,B_2,B_3,B_4$ are also concyclic.
1998 Harvard-MIT Mathematics Tournament, 7
A parabola is inscribed in equilateral triangle $ABC$ of side length $1$ in the sense that $AC$ and $BC$ are tangent to the parabola at $A$ and $B$, respectively.
Find the area between $AB$ and the parabola.
2015 ISI Entrance Examination, 2
Let $y = x^2 + ax + b$ be a parabola that cuts the coordinate axes at three distinct points. Show that the circle passing through these three points also passes through $(0,1)$.
2012 Today's Calculation Of Integral, 777
Given two points $P,\ Q$ on the parabola $C: y=x^2-x-2$ in the $xy$ plane.
Note that the $x$ coodinate of $P$ is less than that of $Q$.
(a) If the origin $O$ is the midpoint of the lines egment $PQ$, then find the equation of the line $PQ$.
(b) If the origin $O$ divides internally the line segment $PQ$ by 2:1, then find the equation of $PQ$.
(c) If the origin $O$ divides internally the line segment $PQ$ by 2:1, find the area of the figure bounded by the parabola $C$ and the line $PQ$.
1962 AMC 12/AHSME, 26
For any real value of $ x$ the maximum value of $ 8x \minus{} 3x^2$ is:
$ \textbf{(A)}\ 0 \qquad
\textbf{(B)}\ \frac83 \qquad
\textbf{(C)}\ 4 \qquad
\textbf{(D)}\ 5 \qquad
\textbf{(E)}\ \frac{16}{3}$
2013 AMC 12/AHSME, 20
For $135^\circ < x < 180^\circ$, points $P=(\cos x, \cos^2 x), Q=(\cot x, \cot^2 x), R=(\sin x, \sin^2 x)$ and $S =(\tan x, \tan^2 x)$ are the vertices of a trapezoid. What is $\sin(2x)$?
$ \textbf{(A)}\ 2-2\sqrt{2}\qquad\textbf{(B)}\ 3\sqrt{3}-6\qquad\textbf{(C)}\ 3\sqrt{2}-5\qquad\textbf{(D)}\ -\frac{3}{4}\qquad\textbf{(E)}\ 1-\sqrt{3} $
2007 Today's Calculation Of Integral, 193
For $a>0$, let $l$ be the line created by rotating the tangent line to parabola $y=x^{2}$, which is tangent at point $A(a,a^{2})$, around $A$ by $-\frac{\pi}{6}$.
Let $B$ be the other intersection of $l$ and $y=x^{2}$. Also, let $C$ be $(a,0)$ and let $O$ be the origin.
(1) Find the equation of $l$.
(2) Let $S(a)$ be the area of the region bounded by $OC$, $CA$ and $y=x^{2}$. Let $T(a)$ be the area of the region bounded by $AB$ and $y=x^{2}$. Find $\lim_{a \to \infty}\frac{T(a)}{S(a)}$.
2012 All-Russian Olympiad, 3
On a Cartesian plane, $n$ parabolas are drawn, all of which are graphs of quadratic trinomials. No two of them are tangent. They divide the plane into many areas, one of which is above all the parabolas. Prove that the border of this area has no more than $2(n-1)$ corners (i.e. the intersections of a pair of parabolas).
2011 AMC 12/AHSME, 14
Suppose $a$ and $b$ are single-digit positive integers chosen independently and at random. What is the probability that the point $(a,b)$ lies above the parabola $y=ax^2-bx$?
$ \textbf{(A)}\ \frac{11}{81} \qquad
\textbf{(B)}\ \frac{13}{81} \qquad
\textbf{(C)}\ \frac{5}{27} \qquad
\textbf{(D)}\ \frac{17}{81} \qquad
\textbf{(E)}\ \frac{19}{81}
$
1946 Putnam, B2
Let $A, B$ be two variable points on a parabola $P_{0}$, such that the tangents at $A$ and $B$ are perpendicular to each other. Show that the locus of the centroid of the triangle formed by $A,B$ and the vertex of $P_0$ is a parabola $P_1 .$ Apply the same process to $P_1$ and repeat the process, obtaining the sequence of parabolas $P_1, P_2 , \ldots, P_n$. If the equation of $P_0$ is $y=m x^2$, find the equation of $P_n .$
2014 HMNT, 8
Consider the parabola consisting of the points $(x, y)$ in the real plane satisfying
$$(y + x) = (y - x)^2 + 3(y - x) + 3.$$
Find the minimum possible value of $y$.
2012 Today's Calculation Of Integral, 781
Let $l,\ m$ be the tangent lines passing through the point $A(a,\ a-1)$ on the line $y=x-1$ and touch the parabola $y=x^2$.
Note that the slope of $l$ is greater than that of $m$.
(1) Exress the slope of $l$ in terms of $a$.
(2) Denote $P,\ Q$ be the points of tangency of the lines $l,\ m$ and the parabola $y=x^2$.
Find the minimum area of the part bounded by the line segment $PQ$ and the parabola $y=x^2$.
(3) Find the minimum distance between the parabola $y=x^2$ and the line $y=x-1$.
2012 Today's Calculation Of Integral, 779
Consider parabolas $C_a: y=-2x^2+4ax-2a^2+a+1$ and $C: y=x^2-2x$ in the coordinate plane.
When $C_a$ and $C$ have two intersection points, find the maximum area enclosed by these parabolas.
1996 Tournament Of Towns, (516) 3
The parabola $y = x^2$ is drawn in the coordinate plane and then the axes are erased so that the whole parabola stays on the picture but the origin is not shown on it. Reconstruct the axes with compass and ruler alone.
(A Egorov)
2015 AMC 12/AHSME, 19
For some positive integers $p$, there is a quadrilateral $ABCD$ with positive integer side lengths, perimeter $p$, right angles at $B$ and $C$, $AB=2$, and $CD=AD$. How many different values of $p<2015$ are possible?
$\textbf{(A) }30\qquad\textbf{(B) }31\qquad\textbf{(C) }61\qquad\textbf{(D) }62\qquad\textbf{(E) }63$
II Soros Olympiad 1995 - 96 (Russia), 10.4
Find the equation of the line tangent to the parabola $y = 1/3(x^2-2x+4)$ and a circle of unit radius centered at the origin. (List all solutions.)
2011 Today's Calculation Of Integral, 703
Given a line segment $PQ$ with endpoints on the parabola $y=x^2$ such that the area bounded by $PQ$ and the parabola always equal to $\frac 43.$ Find the equation of the locus of the midpoint $M$.
2000 Irish Math Olympiad, 5
Consider all parabolas of the form $ y\equal{}x^2\plus{}2px\plus{}q$ for $ p,q \in \mathbb{R}$ which intersect the coordinate axes in three distinct points. For such $ p,q$, denote by $ C_{p,q}$ the circle through these three intersection points. Prove that all circles $ C_{p,q}$ have a point in common.