This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 253

2002 All-Russian Olympiad Regional Round, 10.5

Various points $x_1,..., x_n$ ($n \ge 3$) are randomly located on the $Ox$ axis. Construct all parabolas defined by the monic square trinomials and intersecting the Ox axis at these points (and not intersecting axis at other points). Let$ y = f_1$, $...$ , $y = f_m$ are functions that define these parabolas. Prove that the parabola $y = f_1 +...+ f_m$ intersects the $Ox$ axis at two points.

2008 IberoAmerican Olympiad For University Students, 4

Tags: parabola , geometry , conic
Two vertices $A,B$ of a triangle $ABC$ are located on a parabola $y=ax^2 + bx + c$ with $a>0$ in such a way that the sides $AC,BC$ are tangent to the parabola. Let $m_c$ be the length of the median $CC_1$ of triangle $ABC$ and $S$ be the area of triangle $ABC$. Find \[\frac{S^2}{m_c^3}\]

2006 Romania National Olympiad, 2

Let $n$ be a positive integer. Prove that there exists an integer $k$, $k\geq 2$, and numbers $a_i \in \{ -1, 1 \}$, such that \[ n = \sum_{1\leq i < j \leq k } a_ia_j . \]

1941 Putnam, A5

Tags: parabola , conic
The line $L$ is parallel to the plane $y=z$ and meets the parabola $2x=y^2 ,z=0$ and the parabola $3x=z^2, y=0$. Prove that if $L$ moves freely subject to these constraints then it generates the surface $x=(y-z)\left(\frac{y}{2}-\frac{z}{3}\right)$.

Today's calculation of integrals, 895

In the coordinate plane, suppose that the parabola $C: y=-\frac{p}{2}x^2+q\ (p>0,\ q>0)$ touches the circle with radius 1 centered on the origin at distinct two points. Find the minimum area of the figure enclosed by the part of $y\geq 0$ of $C$ and the $x$-axis.

1940 Putnam, A4

Tags: parabola , conic
Let $p$ be a real constant. The parabola $y^2=-4px$ rolls without slipping around the parabola $y^2=4px$. Find the equation of the locus of the vertex of the rolling parabola.

2008 Harvard-MIT Mathematics Tournament, 26

Let $ \mathcal P$ be a parabola, and let $ V_1$ and $ F_1$ be its vertex and focus, respectively. Let $ A$ and $ B$ be points on $ \mathcal P$ so that $ \angle AV_1 B \equal{} 90^\circ$. Let $ \mathcal Q$ be the locus of the midpoint of $ AB$. It turns out that $ \mathcal Q$ is also a parabola, and let $ V_2$ and $ F_2$ denote its vertex and focus, respectively. Determine the ratio $ F_1F_2/V_1V_2$.

2016 AMC 10, 9

Tags: parabola , conic
All three vertices of $\bigtriangleup ABC$ lie on the parabola defined by $y=x^2$, with $A$ at the origin and $\overline{BC}$ parallel to the $x$-axis. The area of the triangle is $64$. What is the length of $BC$? $\textbf{(A)}\ 4\qquad\textbf{(B)}\ 6\qquad\textbf{(C)}\ 8\qquad\textbf{(D)}\ 10\qquad\textbf{(E)}\ 16$

2024 All-Russian Olympiad Regional Round, 11.7

Graph $G_1$ of a quadratic trinomial $y = px^2 + qx + r$ with real coefficients intersects the graph $G_2$ of a quadratic trinomial $y = x^2$ in points $A$, $B$. The intersection of tangents to $G_2$ in points $A$, $B$ is point $C$. If $C \in G_1$, find all possible values of $p$.

2014 Contests, 2

Let $l$ be the tangent line at the point $(t,\ t^2)\ (0<t<1)$ on the parabola $C: y=x^2$. Denote by $S_1$ the area of the part enclosed by $C,\ l$ and the $x$-axis, denote by $S_2$ of the area of the part enclosed by $C,\ l$ and the line $x=1$. Find the minimum value of $S_1+S_2$.

1966 IMO Shortlist, 50

Solve the equation $\frac{1}{\sin x}+\frac{1}{\cos x}=\frac 1p$ where $p$ is a real parameter. Discuss for which values of $p$ the equation has at least one real solution and determine the number of solutions in $[0, 2\pi)$ for a given $p.$

2012 AIME Problems, 6

The complex numbers $z$ and $w$ satisfy $z^{13} = w$, $w^{11} = z$, and the imaginary part of $z$ is $\sin\left(\frac{m\pi}n\right)$ for relatively prime positive integers $m$ and $n$ with $m < n$. Find $n$.

2024 All-Russian Olympiad Regional Round, 10.2

On a cartesian plane a parabola $y = x^2$ is drawn. For a given $k > 0$ we consider all trapezoids inscribed into this parabola with bases parallel to the x-axis, and the product of the lengths of their bases is exactly $k$. Prove that the lateral sides of all such trapezoids share a common point.

2025 Belarusian National Olympiad, 8.7

Tags: parabola , algebra
Yan and Kirill play a game. At first Kirill says 4 numbers $x_1<x_2<x_3<x_4$, and then Yan says three pairwise different non zero numbers $a_1$, $a_2$ and $a_3$. For all $i$ from $1$ to $3$ they consider the quadratic trinomial $f_i(x)$ which has roots $x_i$ and $x_{i+1}$ and leading coefficient $a_i$, and construct on the plane the graphs of that trinomials. Yan wins if in every pair $(f_1(x),f_2(x))$ and $(f_2(x),f_3(x))$ their graphs intersect at exactly one point, and if in some pair graphs do not intersect or intersect at more than one point Kirill wins. Find which player can guarantee his win regardless of the actions of his opponent. [i]V. Kamianetski[/i]

2012 AMC 12/AHSME, 13

Two parabolas have equations $y=x^2+ax+b$ and $y=x^2+cx+d$, where $a$, $b$, $c$, and $d$ are integers (not necessarily different), each chosen independently by rolling a fair six-sided die. What is the probability that the parabolas have at least one point in common? $\textbf{(A)}\ \frac{1}{2} \qquad\textbf{(B)}\ \frac{25}{36} \qquad\textbf{(C)}\ \frac{5}{6} \qquad\textbf{(D)}\ \frac{31}{36} \qquad\textbf{(E)}\ 1 $

2013 Hitotsubashi University Entrance Examination, 3

Given a parabola $C : y=1-x^2$ in $xy$-palne with the origin $O$. Take two points $P(p,\ 1-p^2),\ Q(q,\ 1-q^2)\ (p<q)$ on $C$. (1) Express the area $S$ of the part enclosed by two segments $OP,\ OQ$ and the parabalola $C$ in terms of $p,\ q$. (2) If $q=p+1$, then find the minimum value of $S$. (3) If $pq=-1$, then find the minimum value of $S$.

1940 Putnam, B3

Let $p>0$ be a real constant. From any point $(a,b)$ in the cartesian plane, show that i) Three normals, real or imaginary, can be drawn to the parabola $y^2=4px$. ii) These are real and distinct if $4(2-p)^3 +27pb^2<0$. iii) Two of them coincide if $(a,b)$ lies on the curve $27py^2=4(x-2p)^3$. iv) All three coincide only if $a=2p$ and $b=0$.

2007 Today's Calculation Of Integral, 241

1.Let $ x \equal{} \alpha ,\ \beta \ (\alpha < \beta )$ are $ x$ coordinates of the intersection points of a parabola $ y \equal{} ax^2 \plus{} bx \plus{} c\ (a\neq 0)$ and the line $ y \equal{} ux \plus{} v$. Prove that the area of the region bounded by these graphs is $ \boxed{\frac {|a|}{6}(\beta \minus{} \alpha )^3}$. 2. Let $ x \equal{} \alpha ,\ \beta \ (\alpha < \beta )$ are $ x$ coordinates of the intersection points of parabolas $ y \equal{} ax^2 \plus{} bx \plus{} c$ and $ y \equal{} px^2 \plus{} qx \plus{} r\ (ap\neq 0)$. Prove that the area of the region bounded by these graphs is $ \boxed{\frac {|a \minus{} p|}{6}(\beta \minus{} \alpha )^3}$.

1989 Putnam, B1

A dart, thrown at random, hits a square target. Assuming that any two parts of the target of equal area are equall likely to be hit, find the probability that hte point hit is nearer to the center than any edge.

1993 All-Russian Olympiad Regional Round, 11.5

The expression $ x^3 \plus{} . . . x^2 \plus{} . . . x \plus{} ... \equal{} 0$ is written on the blackboard. Two pupils alternately replace the dots by real numbers. The first pupil attempts to obtain an equation having exactly one real root. Can his opponent spoil his efforts?

2012 Belarus Team Selection Test, 2

Two distinct points $A$ and $B$ are marked on the left half of the parabola $y = x^2$. Consider any pair of parallel lines which pass through $A$ and $B$ and intersect the right half of the parabola at points $C$ and $D$. Let $K$ be the intersection point of the diagonals $AC$ and $BD$ of the obtained trapezoid $ABCD$. Let $M, N$ be the midpoints of the bases of $ABCD$. Prove that the difference $KM - KN$ depends only on the choice of points $A$ and $B$ but does not depend on the pair of parallel lines described above. (I. Voronovich)

2012 Iran MO (3rd Round), 5

Tags: conic , geometry , parabola
Two fixed lines $l_1$ and $l_2$ are perpendicular to each other at a point $Y$. Points $X$ and $O$ are on $l_2$ and both are on one side of line $l_1$. We draw the circle $\omega$ with center $O$ and radius $OY$. A variable point $Z$ is on line $l_1$. Line $OZ$ cuts circle $\omega$ in $P$. Parallel to $XP$ from $O$ intersects $XZ$ in $S$. Find the locus of the point $S$. [i]Proposed by Nima Hamidi[/i]

1957 AMC 12/AHSME, 40

If the parabola $ y \equal{} \minus{}x^2 \plus{} bx \minus{} 8$ has its vertex on the $ x$-axis, then $ b$ must be: $ \textbf{(A)}\ \text{a positive integer}\qquad \\ \textbf{(B)}\ \text{a positive or a negative rational number}\qquad \\ \textbf{(C)}\ \text{a positive rational number}\qquad \\ \textbf{(D)}\ \text{a positive or a negative irrational number}\qquad \\ \textbf{(E)}\ \text{a negative irrational number}$

2014 AIME Problems, 6

The graphs of $y=3(x-h)^2+j$ and $y=2(x-h)^2+k$ have $y$-intercepts of $2013$ and $2014$, respectively, and each graph has two positive integer $x$-intercepts. Find $h$.

2005 South East Mathematical Olympiad, 1

Let $a \in \mathbb{R}$ be a parameter. (1) Prove that the curves of $y = x^2 + (a + 2)x - 2a + 1$ pass through a fixed point; also, the vertices of these parabolas all lie on the curve of a certain parabola. (2) If the function $x^2 + (a + 2)x - 2a + 1 = 0$ has two distinct real roots, find the value range of the larger root.