Found problems: 250
2012 Dutch Mathematical Olympiad, 4
We are given an acute triangle $ABC$ and points $D$ on $BC$ and $E$ on $AC$ such that $AD$ is perpendicular to $BC$ and $BE$ is perpendicular to $AC$. The intersection of $AD$ and $BE$ is called $H$. A line through $H$ intersects line segment $BC$ in $P$, and intersects line segment $AC$ in $Q$. Furthermore, $K$ is a point on $BE$ such that $PK$ is perpendicular to $BE$, and $L$ is a point on $AD$ such that $QL$ is perpendicular to $AD$. Prove that $DK$ and $EL$ are parallel.
[asy]
unitsize(1 cm);
pair A, B, C, D, E, H, K, L, P, Q;
A = (0,0);
B = (6,0);
C = (3.5,4);
D = (A + reflect(B,C)*(A))/2;
E = (B + reflect(A,C)*(B))/2;
H = extension(A, D, B, E);
P = extension(H, H + dir(-10), B, C);
Q = extension(H, H + dir(-10), A, C);
K = (P + reflect(B,E)*(P))/2;
L = (Q + reflect(A,D)*(Q))/2;
draw(A--B--C--cycle);
draw(A--D);
draw(B--E);
draw(K--P--Q--L);
draw(rightanglemark(B,D,A,5));
draw(rightanglemark(B,E,A,5));
draw(rightanglemark(P,K,B,5));
draw(rightanglemark(A,L,Q,5));
dot("$A$", A, SW);
dot("$B$", B, SE);
dot("$C$", C, N);
dot("$D$", D, NE);
dot("$E$", E, NW);
dot("$H$", H, N);
dot("$K$", K, SW);
dot("$L$", L, SE);
dot("$P$", P, NE);
dot("$Q$", Q, NW);
[/asy]
2015 Thailand TSTST, 2
Let $ABCDEF$ be a hexagon inscribed in a circle (with vertices in that order) with $\angle B + \angle C > 180^o$ and $\angle E + \angle F > 180^o$. Let the lines $AB$ and $CD$ intersect at $X$ and the lines $AF$ and $DE$ intersect at $S$. Let $XY$ and $ST$ be the diameters of the circumcircles of $\vartriangle BCX$ and $\vartriangle EFS$ respectively. If $U$ is the intersection point of the lines $BX$ and $ES$ and $V$ is the intersection point of the lines $BY$ and $ET,$ prove that the lines $UV, XY$ and $ST$ are all parallel.
1999 Switzerland Team Selection Test, 1
Two circles intersect at points $M$ and $N$. Let $A$ be a point on the first circle, distinct from $M,N$. The lines $AM$ and $AN$ meet the second circle again at $B$ and $C$, respectively. Prove that the tangent to the first circle at $A$ is parallel to $BC$.
2013 Czech And Slovak Olympiad IIIA, 3
In the parallelolgram A$BCD$ with the center $S$, let $O$ be the center of the circle of the inscribed triangle $ABD$ and let $T$ be the touch point with the diagonal $BD$. Prove that the lines $OS$ and $CT$ are parallel.
2008 Postal Coaching, 5
Let $\omega$ be the semicircle on diameter $AB$. A line parallel to $AB$ intersects $\omega$ at $C$ and $D$ so that $B$ and $C$ lie on opposite sides of $AD$. The line through $C$ parallel to $AD$ meets $\omega$ again in $E$. Lines $BE$ and $CD$ meet in $F$ and the line through $F$ parallel to $AD$ meets $AB$ in $P$. Prove that $PC$ is tangent to $\omega$.
2020 Australian Maths Olympiad, 3
Let $ABC$ be a triangle with $\angle ACB=90^{\circ}$. Suppose that the tangent line at $C$ to the circle passing through $A,B,C$ intersects the line $AB$ at $D$. Let $E$ be the midpoint of $CD$ and let $F$ be a point on $EB$ such that $AF$ is parallel to $CD$.
Prove that the lines $AB$ and $CF$ are perpendicular.
1984 Tournament Of Towns, (075) T1
In convex hexagon $ABCDEF, AB$ is parallel to $CF, CD$ is parallel to $BE$ and $EF$ is parallel to $AD$. Prove that the areas of triangles $ACE$ and $BDF$ are equal .
VI Soros Olympiad 1999 - 2000 (Russia), 10.4
The circles $\omega_1$ and $\omega_2$ intersect at two points $A$ and $B$. On the circle $\omega_2$, point $C$ is taken in such a way that $CA$ is tangent to the circle $\omega_1$. Through point $A$, a straight line is drawn that intersects the circles $\omega_1$, and $\omega_2$ at points $M$ and $N$, respectively , different from point $A$. Point $P$ is the midpoint of the segment $AC$, $Q$ is the midpoint of $MN$, and $S$ is the intersection point of the line $BQ$ with the circle $\omega_1$, different from point $B$. Prove that the lines $AS$ and $PQ$ are parallel.
2016 Bangladesh Mathematical Olympiad, 6
$\triangle ABC$ is an isosceles triangle with $AC = BC$ and $\angle ACB < 60^{\circ}$. $I$ and $O$ are the incenter and circumcenter of $\triangle ABC$. The circumcircle of $\triangle BIO$ intersects $BC$ at $D \neq B$.
(a) Do the lines $AC$ and $DI$ intersect? Give a proof.
(b) What is the angle of intersection between the lines $OD$ and $IB$?
Swiss NMO - geometry, 2014.1
The points $A, B, C$ and $D$ lie in this order on the circle $k$. Let $t$ be the tangent at $k$ through $C$ and $s$ the reflection of $AB$ at $AC$. Let $G$ be the intersection of the straight line $AC$ and $BD$ and $H$ the intersection of the straight lines $s$ and $CD$. Show that $GH$ is parallel to $t$.
2018 NZMOC Camp Selection Problems, 8
Let $\lambda$ be a line and let $M, N$ be two points on $\lambda$. Circles $\alpha$ and $\beta$ centred at $A$ and $B$ respectively are both tangent to $\lambda$ at $M$, with $A$ and $B$ being on opposite sides of $\lambda$. Circles $\gamma$ and $\delta$ centred at $C$ and $D$ respectively are both tangent to $\lambda$ at $N$, with $C$ and $D$ being on opposite sides of $\lambda$. Moreover $A$ and $C$ are on the same side of $\lambda$. Prove that if there exists a circle tangent to all circles $\alpha, \beta, \gamma, \delta$ containing all of them in its interior, then the lines $AC, BD$ and $\lambda$ are either concurrent or parallel.
2019 Romania Team Selection Test, 2
Let $ABC$ be an acute triangle with $AB<BC$. Let $I$ be the incenter of $ABC$, and let $\omega$ be the circumcircle of $ABC$. The incircle of $ABC$ is tangent to the side $BC$ at $K$. The line $AK$ meets $\omega$ again at $T$. Let $M$ be the midpoint of the side $BC$, and let $N$ be the midpoint of the arc $BAC$ of $\omega$. The segment $NT$ intersects the circumcircle of $BIC$ at $P$. Prove that $PM\parallel AK$.
2022 Iran-Taiwan Friendly Math Competition, 3
Let $ABC$ be a scalene triangle with $I$ be its incenter. The incircle touches $BC$, $CA$, $AB$ at $D$, $E$, $F$, respectively. $Y$, $Z$ are the midpoints of $DF$, $DE$ respectively, and $S$, $V$ are the intersections of lines $YZ$ and $BC$, $AD$, respectively. $T$ is the second intersection of $\odot(ABC)$ and $AS$. $K$ is the foot from $I$ to $AT$. Prove that $KV$ is parallel to $DT$.
[i]Proposed by ltf0501[/i]
Kyiv City MO Juniors Round2 2010+ geometry, 2011.9.4
Let two circles be externally tangent at point $C$, with parallel diameters $A_1A_2, B_1B_2$ (i.e. the quadrilateral $A_1B_1B_2A_2$ is a trapezoid with bases $A_1A_2$ and $B_1B_2$ or parallelogram). Circle with the center on the common internal tangent to these two circles, passes through the intersection point of lines $A_1B_2$ and $A_2B_1$ as well intersects those lines at points $M, N$. Prove that the line $MN$ is perpendicular to the parallel diameters $A_1A_2, B_1B_2$.
(Yuri Biletsky)
2019 Saudi Arabia Pre-TST + Training Tests, 3.1
Let $ABC$ be a triangle inscribed in a circle ($\omega$) and $I$ is the incenter. Denote $D,E$ as the intersection of $AI,BI$ with ($\omega$). And $DE$ cuts $AC,BC$ at $F,G$ respectively. Let $P$ be a point such that $PF \parallel AD$ and $PG \parallel BE$. Suppose that the tangent lines of ($\omega$) at $A,B$ meet at $K$. Prove that three lines $AE,BD,KP$ are concurrent or parallel.
2010 Oral Moscow Geometry Olympiad, 2
Quadrangle $ABCD$ is inscribed in a circle. The perpendicular from the vertex $C$ on the bisector of $\angle ABD$ intersects the line $AB$ at the point $C_1$. The perpendicular from the vertex $B$ on the bisector of $\angle ACD$ intersects the line $CD$ at the point $B_1$. Prove that $B_1C_1 \parallel AD$.
2012 Rioplatense Mathematical Olympiad, Level 3, 3
Let $T$ be a non-isosceles triangle and $n \ge 4$ an integer . Prove that you can divide $T$ in $n$ triangles and draw in each of them an inner bisector so that those $n$ bisectors are parallel.
2020 Indonesia MO, 6
Given a cyclic quadrilateral $ABCD$. Let $X$ be a point on segment $BC$ ($X \not= BC$) such that line $AX$ is perpendicular to the angle bisector of $\angle CBD$, and $Y$ be a point on segment $AD$ ($Y \not= D)$ such that $BY$ is perpendicular to the angle bisector of $\angle CAD$. Prove that $XY$ is parallel to $CD$.
Croatia MO (HMO) - geometry, 2010.3
Let $D$ be a point on the side $AC$ of triangle $ABC$. Let $E$ and $F$ be points on the segments $BD$ and $BC$ respectively, such that $\angle BAE = \angle CAF$. Let $P$ and $Q$ be points on the segments $BC$ and $BD$ respectively, such that $EP \parallel CD$ and $FQ \parallel CD$. Prove that $\angle BAP = \angle CAQ$.
2007 Oral Moscow Geometry Olympiad, 5
Given triangle $ABC$. Points $A_1,B_1$ and $C_1$ are symmetric to its vertices with respect to opposite sides. $C_2$ is the intersection point of lines $AB_1$ and $BA_1$. Points$ A_2$ and $B_2$ are defined similarly. Prove that the lines $A_1 A_2, B_1 B_2$ and $C_1 C_2$ are parallel.
(A. Zaslavsky)
2018 Czech-Polish-Slovak Junior Match, 2
A convex hexagon $ABCDEF$ is given whose sides $AB$ and $DE$ are parallel. Each of the diagonals $AD, BE, CF$ divides this hexagon into two quadrilaterals of equal perimeters. Show that these three diagonals intersect at one point.
2015 Junior Balkan Team Selection Tests - Moldova, 3
Let $\Omega$ be the circle circumscribed to the triangle $ABC$. Tangents taken to the circle $\Omega$ at points $A$ and $B$ intersects at the point $P$ , and the perpendicular bisector of $ (BC)$ cuts line $AC$ at point $Q$. Prove that lines $BC$ and $PQ$ are parallel.
2018 Singapore Senior Math Olympiad, 2
In a convex quadrilateral $ABCD, \angle A < 90^o, \angle B < 90^o$ and $AB > CD$. Points $P$ and $Q$ are on the segments $BC$ and $AD$ respectively. Suppose the triangles $APD$ and $BQC$ are similar. Prove that $AB$ is parallel to $CD$.
1987 Tournament Of Towns, (133) 2
In an acute angled triangle the feet of the altitudes are joined to form a new triangle. In this new triangle it is known that two sides are parallel to sides of the original triangle . Prove that the third side is also parallel to one of the sides of the original triangle .
Mathley 2014-15, 2
A quadrilateral $ABCD$ is inscribed in a circle and its two diagonals $AC,BD$ meet at $G$. Let $M$ be the center of $CD, E,F$ be the points on $BC, AD$ respectively such that $ME \parallel AC$ and $MF \parallel BD$. Point $H$ is the projection of $G$ onto $CD$. The circumcircle of $MEF$ meets $CD$ at $N$ distinct from $M$. Prove that $MN = MH$
Tran Quang Hung, Nguyen Le Phuoc, Thanh Xuan, Hanoi