This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 179

2004 Estonia Team Selection Test, 6

Call a convex polyhedron a [i]footballoid [/i] if it has the following properties. (1) Any face is either a regular pentagon or a regular hexagon. (2) All neighbours of a pentagonal face are hexagonal (a [i]neighbour [/i] of a face is a face that has a common edge with it). Find all possibilities for the number of pentagonal and hexagonal faces of a footballoid.

1979 IMO Shortlist, 4

We consider a prism which has the upper and inferior basis the pentagons: $A_{1}A_{2}A_{3}A_{4}A_{5}$ and $B_{1}B_{2}B_{3}B_{4}B_{5}$. Each of the sides of the two pentagons and the segments $A_{i}B_{j}$ with $i,j=1,\ldots,5$ is colored in red or blue. In every triangle which has all sides colored there exists one red side and one blue side. Prove that all the 10 sides of the two basis are colored in the same color.

1979 Bulgaria National Olympiad, Problem 5

A convex pentagon $ABCDE$ satisfies $AB=BC=CA$ and $CD=DE=EC$. Let $S$ be the center of the equilateral triangle $ABC$ and $M$ and $N$ be the midpoints of $BD$ and $AE$, respectively. Prove that the triangles $SME$ and $SND$ are similar.

1997 Denmark MO - Mohr Contest, 3

About pentagon $ABCDE$ is known that angle $A$ and angle $C$ are right and that the sides $| AB | = 4$, $| BC | = 5$, $| CD | = 10$, $| DE | = 6$. Furthermore, the point $C'$ that appears by mirroring $C$ in the line $BD$, lies on the line segment $AE$. Find angle $E$.

2018 Brazil Team Selection Test, 1

Let $ABCDE$ be a convex pentagon such that $AB=BC=CD$, $\angle{EAB}=\angle{BCD}$, and $\angle{EDC}=\angle{CBA}$. Prove that the perpendicular line from $E$ to $BC$ and the line segments $AC$ and $BD$ are concurrent.

2016 NIMO Problems, 3

Tags: geometry , pentagon
Convex pentagon $ABCDE$ satisfies $AB \parallel DE$, $BE \parallel CD$, $BC \parallel AE$, $AB = 30$, $BC = 18$, $CD = 17$, and $DE = 20$. Find its area. [i] Proposed by Michael Tang [/i]

Brazil L2 Finals (OBM) - geometry, 2012.4

The figure below shows a regular $ABCDE$ pentagon inscribed in an equilateral triangle $MNP$ . Determine the measure of the angle $CMD$. [img]http://4.bp.blogspot.com/-LLT7hB7QwiA/Xp9fXOsihLI/AAAAAAAAL14/5lPsjXeKfYwIr5DyRAKRy0TbrX_zx1xHQCK4BGAYYCw/s200/2012%2Bobm%2Bl2.png[/img]

2013 Sharygin Geometry Olympiad, 1

Let $ABCDE$ be a pentagon with right angles at vertices $B$ and $E$ and such that $AB = AE$ and $BC = CD = DE$. The diagonals $BD$ and $CE$ meet at point $F$. Prove that $FA = AB$.

2018 Germany Team Selection Test, 2

Let $ABCDE$ be a convex pentagon such that $AB=BC=CD$, $\angle{EAB}=\angle{BCD}$, and $\angle{EDC}=\angle{CBA}$. Prove that the perpendicular line from $E$ to $BC$ and the line segments $AC$ and $BD$ are concurrent.

2012 Bosnia and Herzegovina Junior BMO TST, 1

On circle $k$ there are clockwise points $A$, $B$, $C$, $D$ and $E$ such that $\angle ABE = \angle BEC = \angle ECD = 45^{\circ}$. Prove that $AB^2 + CE^2 = BE^2 + CD^2$

1969 All Soviet Union Mathematical Olympiad, 124

Tags: geometry , pentagon
Given a pentagon with all equal sides. a) Prove that there exist such a point on the maximal diagonal, that every side is seen from it inside a right angle. (side $AB$ is seen from the point $C$ inside an arbitrary angle that is greater or equal than $\angle ACB$) b) Prove that the circles constructed on its sides as on the diameters cannot cover the pentagon entirely.

Kvant 2019, M2583

Tags: pentagon , geometry
On the side $DE$ and on the diagonal $BE$ of the regular pentagon $ABCDE$ we consider the squares $DEFG$ and $BEHI$. [list=a] [*] Prove that $A,I,$ and $G$ are collinear. [*] Prove that on this line lies also the centre $O$ of the square $BDJK$. [/list]

2009 JBMO Shortlist, 4

Let $ ABCDE$ be a convex pentagon such that $ AB\plus{}CD\equal{}BC\plus{}DE$ and $ k$ a circle with center on side $ AE$ that touches the sides $ AB$, $ BC$, $ CD$ and $ DE$ at points $ P$, $ Q$, $ R$ and $ S$ (different from vertices of the pentagon) respectively. Prove that lines $ PS$ and $ AE$ are parallel.

1969 IMO Longlists, 70

$(YUG 2)$ A park has the shape of a convex pentagon of area $50000\sqrt{3} m^2$. A man standing at an interior point $O$ of the park notices that he stands at a distance of at most $200 m$ from each vertex of the pentagon. Prove that he stands at a distance of at least $100 m$ from each side of the pentagon.

1983 Bundeswettbewerb Mathematik, 1

The surface of a soccer ball is made up of black pentagons and white hexagons together. On the sides of each pentagon are nothing but hexagons, while on the sides of each border of hexagons alternately pentagons and hexagons. Determine from this information about the soccer ball , the number of its pentagons and its hexagons.

2007 Alexandru Myller, 3

Tags: pentagon , geometry
The convex pentagon $ ABCDE $ has the following properties: $ \text{(i)} AB=BC $ $ \text{(ii)} \angle ABE+\angle CBD =\angle DBE $ $ \text{(iii)} \angle AEB +\angle BDC=180^{\circ} $ Prove that the orthocenter of $ BDE $ lies on $ AC. $

1993 Rioplatense Mathematical Olympiad, Level 3, 6

Let $ABCDE$ be pentagon such that $AE = ED$ and $BC = CD$. It is known that $\angle BAE + \angle EDC + \angle CB A = 360^o$ and that $P$ is the midpoint of $AB$. Show that the triangle $ECP$ is right.

2014 Contests, 3

Is there a convex pentagon in which each diagonal is equal to a side?

2018 Auckland Mathematical Olympiad, 3

Tags: geometry , area , pentagon
Consider the pentagon below. Find its area. [img]https://cdn.artofproblemsolving.com/attachments/7/b/02ad3852b72682513cf62a170ed4aa45c23785.png[/img]

Estonia Open Junior - geometry, 2019.2.1

A pentagon can be divided into equilateral triangles. Find all the possibilities that the sizes of the angles of this pentagon can be.

2018 Hanoi Open Mathematics Competitions, 7

Tags: pentagon , geometry
Suppose that $ABCDE$ is a convex pentagon with $\angle A = 90^o,\angle B = 105^o,\angle C = 90^o$ and $AB = 2,BC = CD = DE =\sqrt2$. If the length of $AE$ is $\sqrt{a }- b$ where $a, b$ are integers, what is the value of $a + b$?

2023 Novosibirsk Oral Olympiad in Geometry, 4

Inside the convex pentagon $ABCDE$, a point $O$ was chosen, and it turned out that all five triangles $AOB$, $BOC$, $COD$, $DOE$ and $EOA$ are congrunet to each other. Prove that these triangles are isosceles or right-angled.

Ukraine Correspondence MO - geometry, 2009.7

Let $ABCDE$ be a convex pentagon such that $AE\parallel BC$ and $\angle ADE = \angle BDC$. The diagonals $AC$ and $BE$ intersect at point $F$. Prove that $\angle CBD= \angle ADF$.

1979 IMO Longlists, 12

We consider a prism which has the upper and inferior basis the pentagons: $A_{1}A_{2}A_{3}A_{4}A_{5}$ and $B_{1}B_{2}B_{3}B_{4}B_{5}$. Each of the sides of the two pentagons and the segments $A_{i}B_{j}$ with $i,j=1,\ldots,5$ is colored in red or blue. In every triangle which has all sides colored there exists one red side and one blue side. Prove that all the 10 sides of the two basis are colored in the same color.

2005 Oral Moscow Geometry Olympiad, 3

$ABCBE$ is a regular pentagon. Point $B'$ is symmetric to point $B$ wrt line $AC$ (see figure). Is it possible to pave the plane with pentagons equal to $AB'CBE$? (S. Markelov) [img]https://cdn.artofproblemsolving.com/attachments/9/2/cbb5756517e85e56c4a931e761a6b4da8fe547.png[/img]