This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 22

2020 Bulgaria EGMO TST, 2

Let $ABC$ be an acute triangle with orthocenter $H$ and altitudes $AA_1$, $BB_1$, $CC_1$. The lines $AB$ and $A_1B_1$ intersect at $C_2$ and $\ell_C$ is the line through the midpoint of $CH$, perpendicular to $CC_2$. The lines $\ell_A$ and $\ell_B$ are defined analogously. Prove that the lines $\ell_A$, $\ell_B$ and $\ell_C$ are concurrent.

2016 JBMO TST - Turkey, 5

In an acute triangle $ABC$, the feet of the perpendiculars from $A$ and $C$ to the opposite sides are $D$ and $E$, respectively. The line passing through $E$ and parallel to $BC$ intersects $AC$ at $F$, the line passing through $D$ and parallel to $AB$ intersects $AC$ at $G$. The feet of the perpendiculars from $F$ to $DG$ and $GE$ are $K$ and $L$, respectively. $KL$ intersects $ED$ at $M$. Prove that $FM \perp ED$.

2023 Sharygin Geometry Olympiad, 2

The diagonals of a rectangle $ABCD$ meet at point $E$. A circle centered at $E$ lies inside the rectangle. Let $CF$, $DG$, $AH$ be the tangents to this circle from $C$, $D$, $A$; let $CF$ meet $DG$ at point $I$, $EI$ meet $AD$ at point $J$, and $AH$ meet $CF$ at point $L$. Prove that $LJ$ is perpendicular to $AD$.

1995 Korea National Olympiad, Day 1

Let $O$ and $R$ be the circumcenter and circumradius of a triangle $ABC$, and let $P$ be any point in the plane of the triangle. The perpendiculars $PA_1,PB_1,PC_1$ are drawn from $P$ on $BC,CA,AB$. Express $S_{A_1B_1C_1}/S_{ABC}$ in terms of $R$ and $d = OP$, where $S_{XYZ}$ is the area of $\triangle XYZ$.

2018 Bundeswettbewerb Mathematik, 3

Let $T$ be a point on a line segment $AB$ such that $T$ is closer to $B$ than to $A$. Show that for each point $C \ne T$ on the line through $T$ perpendicular to $AB$ there is exactly one point $D$ on the line segment $AC$ with $\angle CBD=\angle BAC$. Moreover, show that the line through $D$ perpendicular to $AC$ intersects the line $AB$ in a point $E$ which is independent of the position of $C$.

2025 Bundeswettbewerb Mathematik, 3

Let $k$ be a semicircle with diameter $AB$ and midpoint $M$. Let $P$ be a point on $k$ different from $A$ and $B$. The circle $k_A$ touches $k$ in a point $C$, the segment $MA$ in a point $D$, and additionally the segment $MP$. The circle $k_B$ touches $k$ in a point $E$ and additionally the segments $MB$ and $MP$. Show that the lines $AE$ and $CD$ are perpendicular.

2016 Middle European Mathematical Olympiad, 3

Let $ABC$ be an acute triangle such that $\angle BAC > 45^{\circ}$ with circumcenter $O$. A point $P$ is chosen inside triangle $ABC$ such that $A, P, O, B$ are concyclic and the line $BP$ is perpendicular to the line $CP$. A point $Q$ lies on the segment $BP$ such that the line $AQ$ is parallel to the line $PO$. Prove that $\angle QCB = \angle PCO$.

2019 Mexico National Olympiad, 2

Let $H$ be the orthocenter of acute-angled triangle $ABC$ and $M$ be the midpoint of $AH$. Line $BH$ cuts $AC$ at $D$. Consider point $E$ such that $BC$ is the perpendicular bisector of $DE$. Segments $CM$ and $AE$ intersect at $F$. Show that $BF$ is perpendicular to $CM$. [i]Proposed by Germán Puga[/i]

2021 Oral Moscow Geometry Olympiad, 3

$ABCD$ is a convex quadrilateral such that $\angle A = \angle C < 90^{\circ}$ and $\angle ABD = 90^{\circ}$. $M$ is the midpoint of $AC$. Prove that $MB$ is perpendicular to $CD$.

2017 Pakistan TST, Problem 1

Let $ABCD$ be a cyclic quadrilateral. The diagonals $AC$ and $BD$ meet at $P$, and $DA $ and $CB$ meet at $Q$. Suppose $PQ$ is perpendicular to $AC$. Let $E$ be the midpoint of $AB$. Prove that $PE$ is perpendicular to $BC$.

2021 JBMO TST - Turkey, 1

In an acute-angled triangle $ABC$, the circle with diameter $[AB]$ intersects the altitude drawn from vertex $C$ at a point $D$ and the circle with diameter $[AC]$ intersects the altitude drawn from vertex $B$ at a point $E$. Let the lines $BD$ and $CE$ intersect at $F$. Prove that $$AF\perp DE$$

2013 JBMO Shortlist, 6

Let $P$ and $Q$ be the midpoints of the sides $BC$ and $CD$, respectively in a rectangle $ABCD$. Let $K$ and $M$ be the intersections of the line $PD$ with the lines $QB$ and $QA$, respectively, and let $N$ be the intersection of the lines $PA$ and $QB$. Let $X$, $Y$ and $Z$ be the midpoints of the segments $AN$, $KN$ and $AM$, respectively. Let $\ell_1$ be the line passing through $X$ and perpendicular to $MK$, $\ell_2$ be the line passing through $Y$ and perpendicular to $AM$ and $\ell_3$ the line passing through $Z$ and perpendicular to $KN$. Prove that the lines $\ell_1$, $\ell_2$ and $\ell_3$ are concurrent.

2017 Sharygin Geometry Olympiad, P23

Let a line $m$ touch the incircle of triangle $ABC$. The lines passing through the incenter $I$ and perpendicular to $AI, BI, CI$ meet $m$ at points $A', B', C'$ respectively. Prove that $AA', BB'$ and $CC'$ concur.

2016 Polish MO Finals, 6

Let $I$ be an incenter of $\triangle ABC$. Denote $D, \ S \neq A$ intersections of $AI$ with $BC, \ O(ABC)$ respectively. Let $K, \ L$ be incenters of $\triangle DSB, \ \triangle DCS$. Let $P$ be a reflection of $I$ with the respect to $KL$. Prove that $BP \perp CP$.

2023 Sharygin Geometry Olympiad, 9.7

Let $H$ be the orthocenter of triangle $\mathrm T$. The sidelines of triangle $\mathrm T_1$ pass through the midpoints of $\mathrm T$ and are perpendicular to the corresponding bisectors of $\mathrm T$. The vertices of triangle $\mathrm T_2$ bisect the bisectors of $\mathrm T$. Prove that the lines joining $H$ with the vertices of $\mathrm T_1$ are perpendicular to the sidelines of $\mathrm T_2$.

1992 IMO Shortlist, 5

A convex quadrilateral has equal diagonals. An equilateral triangle is constructed on the outside of each side of the quadrilateral. The centers of the triangles on opposite sides are joined. Show that the two joining lines are perpendicular. [i]Alternative formulation.[/i] Given a convex quadrilateral $ ABCD$ with congruent diagonals $ AC \equal{} BD.$ Four regular triangles are errected externally on its sides. Prove that the segments joining the centroids of the triangles on the opposite sides are perpendicular to each other. [i]Original formulation:[/i] Let $ ABCD$ be a convex quadrilateral such that $ AC \equal{} BD.$ Equilateral triangles are constructed on the sides of the quadrilateral. Let $ O_1,O_2,O_3,O_4$ be the centers of the triangles constructed on $ AB,BC,CD,DA$ respectively. Show that $ O_1O_3$ is perpendicular to $ O_2O_4.$

2019 Czech and Slovak Olympiad III A, 4

Let be $ABC$ an acute-angled triangle. Consider point $P$ lying on the opposite ray to the ray $BC$ such that $|AB|=|BP|$. Similarly, consider point $Q$ on the opposite ray to the ray $CB$ such that $|AC|=|CQ|$. Denote $J$ the excenter of $ABC$ with respect to $A$ and $D,E$ tangent points of this excircle with the lines $AB$ and $AC$, respectively. Suppose that the opposite rays to $DP$ and $EQ$ intersect in $F\neq J$. Prove that $AF\perp FJ$.

2024 Bangladesh Mathematical Olympiad, P7

Let $ABCD$ be a square. $E$ and $F$ lie on sides $AB$ and $BC$, respectively, such that $BE = BF$. The line perpendicular to $CE$, which passes through $B$, intersects $CE$ and $AD$ at points $G$ and $H$, respectively. The lines $FH$ and $CE$ intersect at point $P$ and the lines $GF$ and $CD$ intersect at point $Q$. Prove that the line $DP$ is perpendicular to the line $BQ$.

2022 All-Russian Olympiad, 3

An acute-angled triangle $ABC$ is fixed on a plane with largest side $BC$. Let $PQ$ be an arbitrary diameter of its circumscribed circle, and the point $P$ lies on the smaller arc $AB$, and the point $Q$ is on the smaller arc $AC$. Points $X, Y, Z$ are feet of perpendiculars dropped from point $P$ to the line $AB$, from point $Q$ to the line $AC$ and from point $A$ to line $PQ$. Prove that the center of the circumscribed circle of triangle $XYZ$ lies on a fixed circle.

Russian TST 2019, P2

Let $I$ be an incenter of $\triangle ABC$. Denote $D, \ S \neq A$ intersections of $AI$ with $BC, \ O(ABC)$ respectively. Let $K, \ L$ be incenters of $\triangle DSB, \ \triangle DCS$. Let $P$ be a reflection of $I$ with the respect to $KL$. Prove that $BP \perp CP$.

1993 Moldova Team Selection Test, 2

A convex quadrilateral has equal diagonals. An equilateral triangle is constructed on the outside of each side of the quadrilateral. The centers of the triangles on opposite sides are joined. Show that the two joining lines are perpendicular. [i]Alternative formulation.[/i] Given a convex quadrilateral $ ABCD$ with congruent diagonals $ AC \equal{} BD.$ Four regular triangles are errected externally on its sides. Prove that the segments joining the centroids of the triangles on the opposite sides are perpendicular to each other. [i]Original formulation:[/i] Let $ ABCD$ be a convex quadrilateral such that $ AC \equal{} BD.$ Equilateral triangles are constructed on the sides of the quadrilateral. Let $ O_1,O_2,O_3,O_4$ be the centers of the triangles constructed on $ AB,BC,CD,DA$ respectively. Show that $ O_1O_3$ is perpendicular to $ O_2O_4.$

2017 Baltic Way, 14

Let $P$ be a point inside the acute angle $\angle BAC$. Suppose that $\angle ABP = \angle ACP = 90^{\circ}$. The points $D$ and $E$ are on the segments $BA$ and $CA$, respectively, such that $BD = BP$ and $CP = CE$. The points $F$ and $G$ are on the segments $AC$ and $AB$, respectively, such that $DF$ is perpendicular to $AB$ and $EG$ is perpendicular to $AC$. Show that $PF = PG$.