This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3597

2007 Belarusian National Olympiad, 1

Find all polynomials with degree $\leq n$ and nonnegative coefficients, such that $P(x)P(\frac{1}{x}) \leq P(1)^2$ for every positive $x$

2010 Princeton University Math Competition, 1

Find the sum of the coefficients of the polynomial $(63x-61)^4$.

2010 CentroAmerican, 5

If $p$, $q$ and $r$ are nonzero rational numbers such that $\sqrt[3]{pq^2}+\sqrt[3]{qr^2}+\sqrt[3]{rp^2}$ is a nonzero rational number, prove that $\frac{1}{\sqrt[3]{pq^2}}+\frac{1}{\sqrt[3]{qr^2}}+\frac{1}{\sqrt[3]{rp^2}}$ is also a rational number.

1999 AMC 12/AHSME, 17

Let $ P(x)$ be a polynomial such that when $ P(x)$ is divided by $ x \minus{} 19$, the remainder is $ 99$, and when $ P(x)$ is divided by $ x \minus{} 99$, the remainder is $ 19$. What is the remainder when $ P(x)$ is divided by $ (x \minus{} 19)(x \minus{} 99)$? $ \textbf{(A)}\ \minus{}x \plus{} 80 \qquad \textbf{(B)}\ x \plus{} 80 \qquad \textbf{(C)}\ \minus{}x \plus{} 118 \qquad \textbf{(D)}\ x \plus{} 118 \qquad \textbf{(E)}\ 0$

1988 Canada National Olympiad, 1

For what real values of $k$ do $1988x^2 + kx + 8891$ and $8891x^2 + kx + 1988$ have a common zero?

2010 Contests, 2

Two polynomials $P(x)=x^4+ax^3+bx^2+cx+d$ and $Q(x)=x^2+px+q$ have real coefficients, and $I$ is an interval on the real line of length greater than $2$. Suppose $P(x)$ and $Q(x)$ take negative values on $I$, and they take non-negative values outside $I$. Prove that there exists a real number $x_0$ such that $P(x_0)<Q(x_0)$.

1993 IMO Shortlist, 3

Let $n > 1$ be an integer. In a circular arrangement of $n$ lamps $L_0, \ldots, L_{n-1},$ each of of which can either ON or OFF, we start with the situation where all lamps are ON, and then carry out a sequence of steps, $Step_0, Step_1, \ldots .$ If $L_{j-1}$ ($j$ is taken mod $n$) is ON then $Step_j$ changes the state of $L_j$ (it goes from ON to OFF or from OFF to ON) but does not change the state of any of the other lamps. If $L_{j-1}$ is OFF then $Step_j$ does not change anything at all. Show that: (i) There is a positive integer $M(n)$ such that after $M(n)$ steps all lamps are ON again, (ii) If $n$ has the form $2^k$ then all the lamps are ON after $n^2-1$ steps, (iii) If $n$ has the form $2^k + 1$ then all lamps are ON after $n^2 - n + 1$ steps.

2009 Today's Calculation Of Integral, 417

The functions $ f(x) ,\ g(x)$ satify that $ f(x) \equal{} \frac {x^3}{2} \plus{} 1 \minus{} x\int_0^x g(t)\ dt,\ g(x) \equal{} x \minus{} \int_0^1 f(t)\ dt$. Let $ l_1,\ l_2$ be the tangent lines of the curve $ y \equal{} f(x)$, which pass through the point $ (a,\ g(a))$ on the curve $ y \equal{} g(x)$. Find the minimum area of the figure bounded by the tangent tlines $ l_1,\ l_2$ and the curve $ y \equal{} f(x)$ .

2010 Costa Rica - Final Round, 3

Christian Reiher and Reid Barton want to open a security box, they already managed to discover the algorithm to generate the key codes and they obtained the following information: $i)$ In the screen of the box will appear a sequence of $n+1$ numbers, $C_0 = (a_{0,1},a_{0,2},...,a_{0,n+1})$ $ii)$ If the code $K = (k_1,k_2,...,k_n)$ opens the security box then the following must happen: a) A sequence $C_i = (a_{i,1},a_{i,2},...,a_{i,n+1})$ will be asigned to each $k_i$ defined as follows: $a_{i,1} = 1$ and $a_{i,j} = a_{i-1,j}-k_ia_{i,j-1}$, for $i,j \ge 1$ b) The sequence $(C_n)$ asigned to $k_n$ satisfies that $S_n = \sum_{i=1}^{n+1}|a_i|$ has its least possible value, considering all possible sequences $K$. The sequence $C_0$ that appears in the screen is the following: $a_{0,1} = 1$ and $a_0,i$ is the sum of the products of the elements of each of the subsets with $i-1$ elements of the set $A =$ {$1,2,3,...,n$}, $i\ge 2$, such that $a_{0, n+1} = n!$ Find a sequence $K = (k_1,k_2,...,k_n)$ that satisfies the conditions of the problem and show that there exists at least $n!$ of them.

1970 Putnam, A2

Tags: root , algebra , polynomial
Consider the locus given by the real polynomial equation $$ Ax^2 +Bxy+Cy^2 +Dx^3 +E x^2 y +F xy^2 +G y^3=0,$$ where $B^2 -4AC <0.$ Prove that there is a positive number $\delta$ such that there are no points of the locus in the punctured disk $$0 <x^2 +y^2 < \delta^2.$$

2013 Olympic Revenge, 5

Consider $n$ lamps clockwise numbered from $1$ to $n$ on a circle. Let $\xi$ to be a configuration where $0 \le \ell \le n$ random lamps are turned on. A [i]cool procedure[/i] consists in perform, simultaneously, the following operations: for each one of the $\ell$ lamps which are turned on, we verify the number of the lamp; if $i$ is turned on, a [i]signal[/i] of range $i$ is sent by this lamp, and it will be received only by the next $i$ lamps which follow $i$, turned on or turned off, also considered clockwise. At the end of the operations we verify, for each lamp, turned on or turned off, how many signals it has received. If it was reached by an even number of signals, it remains on the same state(that is, if it was turned on, it will be turned on; if it was turned off, it will be turned off). Otherwise, it's state will be changed. The example in attachment, for $n=4$, ilustrates a configuration where lamps $2$ and $4$ are initially turned on. Lamp $2$ sends signal only for the lamps $3$ e $4$, while lamp $4$ sends signal for lamps $1$, $2$, $3$ e $4$. Therefore, we verify that lamps $1$ e $2$ received only one signal, while lamps $3$ e $4$ received two signals. Therefore, in the next configuration, lamps $1$ e $4$ will be turned on, while lamps $2$ e $3$ will be turned off. Let $\Psi$ to be the set of all $2^n$ possible configurations, where $0 \le \ell \le n$ random lamps are turned on. We define a function $f: \Psi \rightarrow \Psi$ where, if $\xi$ is a configuration of lamps, then $f(\xi)$ is the configurations obtained after we perform the [i]cool procedure[/i] described above. Determine all values of $n$ for which $f$ is bijective.

PEN Q Problems, 9

For non-negative integers $n$ and $k$, let $P_{n, k}(x)$ denote the rational function \[\frac{(x^{n}-1)(x^{n}-x) \cdots (x^{n}-x^{k-1})}{(x^{k}-1)(x^{k}-x) \cdots (x^{k}-x^{k-1})}.\] Show that $P_{n, k}(x)$ is actually a polynomial for all $n, k \in \mathbb{N}$.

2006 Alexandru Myller, 2

For a prime $ p\ge 5, $ determine the number of polynomials $ X^p+pX^k+pX^l+1 $ with $ 1<k<l<p, $ that are ireducible over the integers.

2005 Pan African, 2

Let $S$ be a set of integers with the property that any integer root of any non-zero polynomial with coefficients in $S$ also belongs to $S$. If $0$ and $1000$ are elements of $S$, prove that $-2$ is also an element of $S$.

2023 Bulgaria National Olympiad, 3

Let $f(x)$ be a polynomial with positive integer coefficients. For every $n\in\mathbb{N}$, let $a_{1}^{(n)}, a_{2}^{(n)}, \dots , a_{n}^{(n)}$ be fixed positive integers that give pairwise different residues modulo $n$ and let \[g(n) = \sum\limits_{i=1}^{n} f(a_{i}^{(n)}) = f(a_{1}^{(n)}) + f(a_{2}^{(n)}) + \dots + f(a_{n}^{(n)})\] Prove that there exists a constant $M$ such that for all integers $m>M$ we have $\gcd(m, g(m))>2023^{2023}$.

2004 Estonia Team Selection Test, 1

Let $k > 1$ be a fixed natural number. Find all polynomials $P(x)$ satisfying the condition $P(x^k) = (P(x))^k$ for all real numbers $x$.

2014 USA TSTST, 4

Let $P(x)$ and $Q(x)$ be arbitrary polynomials with real coefficients, and let $d$ be the degree of $P(x)$. Assume that $P(x)$ is not the zero polynomial. Prove that there exist polynomials $A(x)$ and $B(x)$ such that: (i) both $A$ and $B$ have degree at most $d/2$ (ii) at most one of $A$ and $B$ is the zero polynomial. (iii) $\frac{A(x)+Q(x)B(x)}{P(x)}$ is a polynomial with real coefficients. That is, there is some polynomial $C(x)$ with real coefficients such that $A(x)+Q(x)B(x)=P(x)C(x)$.

2017 India IMO Training Camp, 1

Suppose $f,g \in \mathbb{R}[x]$ are non constant polynomials. Suppose neither of $f,g$ is the square of a real polynomial but $f(g(x))$ is. Prove that $g(f(x))$ is not the square of a real polynomial.

Russian TST 2018, P1

Tags: root , polynomial , algebra
Let $f(x) = x^2 + 2018x + 1$. Let $f_1(x)=f(x)$ and $f_k(x)=f(f_{k-1}(x))$ for all $k\geqslant 2$. Prove that for any positive integer $n{}$, the equation $f_n(x)=0$ has at least two distinct real roots.

2007 ITest, 45

Find the sum of all positive integers $B$ such that $(111)_B=(aabbcc)_6$, where $a,b,c$ represent distinct base $6$ digits, $a\neq 0$.

1991 China Team Selection Test, 1

Let real coefficient polynomial $f(x) = x^n + a_1 \cdot x^{n-1} + \ldots + a_n$ has real roots $b_1, b_2, \ldots, b_n$, $n \geq 2,$ prove that $\forall x \geq max\{b_1, b_2, \ldots, b_n\}$, we have \[f(x+1) \geq \frac{2 \cdot n^2}{\frac{1}{x-b_1} + \frac{1}{x-b_2} + \ldots + \frac{1}{x-b_n}}.\]

Russian TST 2017, P3

Prove that for any polynomial $P$ with real coefficients, and for any positive integer $n$, there exists a polynomial $Q$ with real coefficients such that $P(x)^2 +Q(x)^2$ is divisible by $(1+x^2)^n$.

1962 Poland - Second Round, 2

What conditions should real numbers $ a $, $ b $, $ c $, $ d $, $ e $, $ f $ meet in order for a polynomial of second degree $$ax^2 + 2bxy + cy^2 + 2dx + 2ey + f$$ was the product of two first degree polynomials with real coefficients ?

2018 Balkan MO Shortlist, N4

Let $P(x)=a_d x^d+\dots+a_1 x+a_0$ be a non-constant polynomial with non-negative integer coefficients having $d$ rational roots.Prove that $$\text{lcm} \left(P(m),P(m+1),\dots,P(n) \right)\geq m \dbinom{n}{m}$$ for all $n>m$ [i](Navid Safaei, Iran)[/i]

1962 All Russian Mathematical Olympiad, 024

Given $x,y,z$, three different integers. Prove that $$(x-y)^5+(y-z)^5+(z-x)^5$$ is divisible by $$5(x-y)(y-z)(z-x)$$