This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3597

2004 Romania Team Selection Test, 6

Let $a,b$ be two positive integers, such that $ab\neq 1$. Find all the integer values that $f(a,b)$ can take, where \[ f(a,b) = \frac { a^2+ab+b^2} { ab- 1} . \]

2004 Harvard-MIT Mathematics Tournament, 9

Find the positive constant $c_0$ such that the series \[ \displaystyle\sum_{n = 0}^{\infty} \dfrac {n!}{(cn)^n} \] converges for $c>c_0$ and diverges for $0<c<c_0$.

1964 AMC 12/AHSME, 25

The set of values of $m$ for which $x^2+3xy+x+my-m$ has two factors, with integer coefficients, which are linear in $x$ and $y$, is precisely: $ \textbf{(A)}\ 0, 12, -12\qquad\textbf{(B)}\ 0, 12\qquad\textbf{(C)}\ 12, -12\qquad\textbf{(D)}\ 12\qquad\textbf{(E)}\ 0 $

2024 Francophone Mathematical Olympiad, 1

Tags: game , polynomial , algebra
Let $d$ and $m$ be two fixed positive integers. Pinocchio and Geppetto know the values of $d$ and $m$ and play the following game: In the beginning, Pinocchio chooses a polynomial $P$ of degree at most $d$ with integer coefficients. Then Geppetto asks him questions of the following form "What is the value of $P(n)$?'' for $n \in \mathbb{Z}$. Pinocchio usually says the truth, but he can lie up to $m$ times. What is, as a function of $d$ and $m$, the minimal number of questions that Geppetto needs to ask to be sure to determine $P$, no matter how Pinocchio chooses to reply?

1980 IMO, 2

In a rectangular coordinate system we call a horizontal line parallel to the $x$ -axis triangular if it intersects the curve with equation \[y = x^4 + px^3 + qx^2 + rx + s\] in the points $A,B,C$ and $D$ (from left to right) such that the segments $AB, AC$ and $AD$ are the sides of a triangle. Prove that the lines parallel to the $x$ - axis intersecting the curve in four distinct points are all triangular or none of them is triangular.

2009 All-Russian Olympiad Regional Round, 10.1

Square trinomial $f(x)$ is such that the polynomial $(f(x)) ^3- f(x)$ has exactly three real roots. Find the ordinate of the vertex of the graph of this trinomial.

1964 AMC 12/AHSME, 31

Let \[f(n)=\dfrac{5+3\sqrt{5}}{10}\left(\dfrac{1+\sqrt{5}}{2}\right)^n+\dfrac{5-3\sqrt{5}}{10}\left(\dfrac{1-\sqrt{5}}{2}\right)^n.\] Then $f(n+1)-f(n-1)$, expressed in terms of $f(n)$, equals: $\textbf{(A)}\ \dfrac{1}{2}f(n) \qquad \textbf{(B)}\ f(n)\qquad \textbf{(C)}\ 2f(n)+1 \qquad \textbf{(D)}\ f^2(n) \qquad \textbf{(E)}\ \dfrac{1}{2}(f^2(n)-1)$

2011 Hanoi Open Mathematics Competitions, 4

Prove that $1 + x + x^2 + x^3 + ...+ x^{2011} \ge 0$ for every $x \ge - 1$ .

2005 Alexandru Myller, 4

Let $K$ be a finite field and $f:K\to K^*$. Prove that there is a reducible polynomial $P\in K[X]$ s.t. $P(x)=f(x),\forall x\in K$. [i]Marian Andronache[/i]

2018 Thailand TSTST, 1

Find all polynomials $P(x)$ with real coefficients satisfying: $P(2017) = 2016$ and $$(P(x)+1)^2=P(x^2+1).$$

2015 India PRMO, 2

$2.$ The equations $x^2-4x+k=0$ and $x^2+kx-4=0,$ where $k$ is a real number, have exactly one common root. What is the value of $k ?$

2017 Mathematical Talent Reward Programme, MCQ: P 3

Let $p(x)=x^4-4x^3+2x^2+ax+b$. Suppose that for every root $\lambda$ of $p$, $\frac{1}{\lambda}$ is also a root of $p$. Then $a+b=$ [list=1] [*] -3 [*] -6 [*] -4 [*] -8 [/list]

2008 Germany Team Selection Test, 3

Find all real polynomials $ f$ with $ x,y \in \mathbb{R}$ such that \[ 2 y f(x \plus{} y) \plus{} (x \minus{} y)(f(x) \plus{} f(y)) \geq 0. \]

2020/2021 Tournament of Towns, P1

Each of the quadratic polynomials $P(x), Q(x)$ and $P(x)+Q(x)$ with real coefficients has a repeated root. Is it guaranteed that those roots coincide? [i]Boris Frenkin[/i]

IV Soros Olympiad 1997 - 98 (Russia), 10.8

Let $a$ be the root of the equation $x^3-x-1=0$. Find an equation of the third degree with integer coefficients whose root is $a^3$.

1981 Swedish Mathematical Competition, 3

Find all polynomials $p(x)$ of degree $5$ such that $p(x) + 1$ is divisible by $(x-1)^3$ and $p(x) - 1$ is divisible by $(x+1)^3$.

PEN G Problems, 25

Show that $\tan \left( \frac{\pi}{m} \right)$ is irrational for all positive integers $m \ge 5$.

2021 Belarusian National Olympiad, 8.2

Given quadratic trinomials $P(x)=x^2+ax+b$ and $Q(x)=x^2+cx+d$, where $a>c$. It is known that for every real $t$ and $s$ with $t+s=1$ the polynomial $B(x)=tP(x)+sQ(x)$ has at least one real root. Prove that $bc \geq ad$.

2011 India National Olympiad, 3

Let $P(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_0$ and $Q(x)=b_nx^n+b_{n-1}x^{n-1}+\cdots+b_0$ be two polynomials with integral coefficients such that $a_n-b_n$ is a prime and $a_nb_0-a_0b_n\neq 0,$ and $a_{n-1}=b_{n-1}.$ Suppose that there exists a rational number $r$ such that $P(r)=Q(r)=0.$ Prove that $r\in\mathbb Z.$

1989 India National Olympiad, 1

Prove that the Polynomial $ f(x) \equal{} x^{4} \plus{} 26x^{3} \plus{} 56x^{2} \plus{} 78x \plus{} 1989$ can't be expressed as a product $ f(x) \equal{} p(x)q(x)$ , where $ p(x)$ and $ q(x)$ are both polynomial with integral coefficients and with degree at least $ 1$.

2010 Romanian Masters In Mathematics, 4

Determine whether there exists a polynomial $f(x_1, x_2)$ with two variables, with integer coefficients, and two points $A=(a_1, a_2)$ and $B=(b_1, b_2)$ in the plane, satisfying the following conditions: (i) $A$ is an integer point (i.e $a_1$ and $a_2$ are integers); (ii) $|a_1-b_1|+|a_2-b_2|=2010$; (iii) $f(n_1, n_2)>f(a_1, a_2)$ for all integer points $(n_1, n_2)$ in the plane other than $A$; (iv) $f(x_1, x_2)>f(b_1, b_2)$ for all integer points $(x_1, x_2)$ in the plane other than $B$. [i]Massimo Gobbino, Italy[/i]

1972 Miklós Schweitzer, 6

Let $ P(z)$ be a polynomial of degree $ n$ with complex coefficients, \[ P(0)\equal{}1, \;\textrm{and}\ \;|P(z)|\leq M\ \;\textrm{for}\ \;|z| \leq 1\ .\] Prove that every root of $ P(z)$ in the closed unit disc has multiplicity at most $ c\sqrt{n}$, where $ c\equal{}c(M) >0$ is a constant depending only on $ M$. [i]G. Halasz[/i]

2009 USA Team Selection Test, 9

Prove that for positive real numbers $x$, $y$, $z$, \[ x^3(y^2+z^2)^2 + y^3(z^2+x^2)^2+z^3(x^2+y^2)^2 \geq xyz\left[xy(x+y)^2 + yz(y+z)^2 + zx(z+x)^2\right].\] [i]Zarathustra (Zeb) Brady.[/i]

2017 IFYM, Sozopol, 8

Find all polynomials $P\in \mathbb{R}[x]$, for which $P(P(x))=\lfloor P^2 (x)\rfloor$ is true for $\forall x\in \mathbb{Z}$.

2011 Purple Comet Problems, 9

There are integers $m$ and $n$ so that $9 +\sqrt{11}$ is a root of the polynomial $x^2 + mx + n.$ Find $m + n.$