Found problems: 343
2012 ELMO Shortlist, 1
In acute triangle $ABC$, let $D,E,F$ denote the feet of the altitudes from $A,B,C$, respectively, and let $\omega$ be the circumcircle of $\triangle AEF$. Let $\omega_1$ and $\omega_2$ be the circles through $D$ tangent to $\omega$ at $E$ and $F$, respectively. Show that $\omega_1$ and $\omega_2$ meet at a point $P$ on $BC$ other than $D$.
[i]Ray Li.[/i]
2013 Online Math Open Problems, 10
In convex quadrilateral $AEBC$, $\angle BEA = \angle CAE = 90^{\circ}$ and $AB = 15$, $BC = 14$ and $CA = 13$. Let $D$ be the foot of the altitude from $C$ to $\overline{AB}$. If ray $CD$ meets $\overline{AE}$ at $F$, compute $AE \cdot AF$.
[i]Proposed by David Stoner[/i]
2005 Turkey MO (2nd round), 2
In a triangle $ABC$ with $AB<AC<BC$, the perpendicular bisectors of $AC$ and $BC$ intersect $BC$ and $AC$ at $K$ and $L$, respectively. Let $O$, $O_1$, and $O_2$ be the circumcentres of triangles $ABC$, $CKL$, and $OAB$, respectively. Prove that $OCO_1O_2$ is a parallelogram.
2012 ELMO Shortlist, 2
In triangle $ABC$, $P$ is a point on altitude $AD$. $Q,R$ are the feet of the perpendiculars from $P$ to $AB,AC$, and $QP,RP$ meet $BC$ at $S$ and $T$ respectively. the circumcircles of $BQS$ and $CRT$ meet $QR$ at $X,Y$.
a) Prove $SX,TY, AD$ are concurrent at a point $Z$.
b) Prove $Z$ is on $QR$ iff $Z=H$, where $H$ is the orthocenter of $ABC$.
[i]Ray Li.[/i]
1970 IMO Shortlist, 6
In the triangle $ABC$ let $B'$ and $C'$ be the midpoints of the sides $AC$ and $AB$ respectively and $H$ the foot of the altitude passing through the vertex $A$. Prove that the circumcircles of the triangles $AB'C'$,$BC'H$, and $B'CH$ have a common point $I$ and that the line $HI$ passes through the midpoint of the segment $B'C'.$
2017 USA TSTST, 1
Let $ABC$ be a triangle with circumcircle $\Gamma$, circumcenter $O$, and orthocenter $H$. Assume that $AB\neq AC$ and that $\angle A \neq 90^{\circ}$. Let $M$ and $N$ be the midpoints of sides $AB$ and $AC$, respectively, and let $E$ and $F$ be the feet of the altitudes from $B$ and $C$ in $\triangle ABC$, respectively. Let $P$ be the intersection of line $MN$ with the tangent line to $\Gamma$ at $A$. Let $Q$ be the intersection point, other than $A$, of $\Gamma$ with the circumcircle of $\triangle AEF$. Let $R$ be the intersection of lines $AQ$ and $EF$. Prove that $PR\perp OH$.
[i]Proposed by Ray Li[/i]
2014 Sharygin Geometry Olympiad, 21
Let $ABCD$ be a circumscribed quadrilateral. Its incircle $\omega$ touches the sides $BC$ and $DA$ at points $E$ and $F$ respectively. It is known that lines $AB,FE$ and $CD$ concur. The circumcircles of triangles $AED$ and $BFC$ meet $\omega$ for the second time at points $E_1$ and $F_1$. Prove that $EF$ is parallel to $E_1 F_1$.
2013 Sharygin Geometry Olympiad, 21
Chords $BC$ and $DE$ of circle $\omega$ meet at point $A$. The line through $D$ parallel to $BC$ meets $\omega$ again at $F$, and $FA$ meets $\omega$ again at $T$. Let $M = ET \cap BC$ and let $N$ be the reflection of $A$ over $M$. Show that $(DEN)$ passes through the midpoint of $BC$.
2025 Iran MO (2nd Round), 4
Given is an acute and scalene triangle $ABC$ with circumcenter $O$. $BO$ and $CO$ intersect the altitude from $A$ to $BC$ at points $P$ and $Q$ respectively. $X$ is the circumcenter of triangle $OPQ$ and $O'$ is the reflection of $O$ over $BC$. $Y$ is the second intersection of circumcircles of triangles $BXP$ and $CXQ$. Show that $X,Y,O'$ are collinear.
2006 Italy TST, 1
The circles $\gamma_1$ and $\gamma_2$ intersect at the points $Q$ and $R$ and internally touch a circle $\gamma$ at $A_1$ and $A_2$ respectively. Let $P$ be an arbitrary point on $\gamma$. Segments $PA_1$ and $PA_2$ meet $\gamma_1$ and $\gamma_2$ again at $B_1$ and $B_2$ respectively.
a) Prove that the tangent to $\gamma_{1}$ at $B_{1}$ and the tangent to $\gamma_{2}$ at $B_{2}$ are parallel.
b) Prove that $B_{1}B_{2}$ is the common tangent to $\gamma_{1}$ and $\gamma_{2}$ iff $P$ lies on $QR$.
2006 Baltic Way, 12
Let $ABC$ be a triangle, let $B_{1}$ be the midpoint of the side $AB$ and $C_{1}$ the midpoint of the side $AC$. Let $P$ be the point of intersection, other than $A$, of the circumscribed circles around the triangles $ABC_{1}$ and $AB_{1}C$. Let $P_{1}$ be the point of intersection, other than $A$, of the line $AP$ with the circumscribed circle around the triangle $AB_{1}C_{1}$. Prove that $2AP=3AP_{1}$.
2005 AMC 12/AHSME, 14
A circle having center $ (0,k)$, with $ k > 6$, is tangent to the lines $ y \equal{} x, y \equal{} \minus{} x$ and $ y \equal{} 6$. What is the radius of this circle?
$ \textbf{(A)}\ 6 \sqrt 2 \minus{} 6\qquad
\textbf{(B)}\ 6\qquad
\textbf{(C)}\ 6 \sqrt 2\qquad
\textbf{(D)}\ 12\qquad
\textbf{(E)}\ 6 \plus{} 6 \sqrt 2$
2005 Italy TST, 2
The circle $\Gamma$ and the line $\ell$ have no common points. Let $AB$ be the diameter of $\Gamma$ perpendicular to $\ell$, with $B$ closer to $\ell$ than $A$. An arbitrary point $C\not= A$, $B$ is chosen on $\Gamma$. The line $AC$ intersects $\ell$ at $D$. The line $DE$ is tangent to $\Gamma$ at $E$, with $B$ and $E$ on the same side of $AC$. Let $BE$ intersect $\ell$ at $F$, and let $AF$ intersect $\Gamma$ at $G\not= A$. Let $H$ be the reflection of $G$ in $AB$. Show that $F,C$, and $H$ are collinear.
2023 Germany Team Selection Test, 1
In a triangle $\triangle ABC$ with orthocenter $H$, let $BH$ and $CH$ intersect $AC$ and $AB$ at $E$ and $F$, respectively. If the tangent line to the circumcircle of $\triangle ABC$ passing through $A$ intersects $BC$ at $P$, $M$ is the midpoint of $AH$, and $EF$ intersects $BC$ at $G$, then prove that $PM$ is parallel to $GH$.
[i]Proposed by Sreejato Bhattacharya[/i]
1983 AMC 12/AHSME, 2
Point $P$ is outside circle $C$ on the plane. At most how many points on $C$ are $3 \text{cm}$ from $P$?
$\text{(A)} \ 1 \qquad \text{(B)} \ 2 \qquad \text{(C)} \ 3 \qquad \text{(D)} \ 4 \qquad \text{(E)} \ 8$
2007 All-Russian Olympiad, 6
Let $ABC$ be an acute triangle. The points $M$ and $N$ are midpoints of $AB$ and $BC$ respectively, and $BH$ is an altitude of $ABC$. The circumcircles of $AHN$ and $CHM$ meet in $P$ where $P\ne H$. Prove that $PH$ passes through the midpoint of $MN$.
[i]V. Filimonov[/i]
1986 IMO Longlists, 3
A line parallel to the side $BC$ of a triangle $ABC$ meets $AB$ in $F$ and $AC$ in $E$. Prove that the circles on $BE$ and $CF$ as diameters intersect in a point lying on the altitude of the triangle $ABC$ dropped from $A$ to $BC.$
2018 Thailand TST, 2
In triangle $ABC$, let $\omega$ be the excircle opposite to $A$. Let $D, E$ and $F$ be the points where $\omega$ is tangent to $BC, CA$, and $AB$, respectively. The circle $AEF$ intersects line $BC$ at $P$ and $Q$. Let $M$ be the midpoint of $AD$. Prove that the circle $MPQ$ is tangent to $\omega$.
2002 Iran Team Selection Test, 7
$S_{1},S_{2},S_{3}$ are three spheres in $\mathbb R^{3}$ that their centers are not collinear. $k\leq8$ is the number of planes that touch three spheres. $A_{i},B_{i},C_{i}$ is the point that $i$-th plane touch the spheres $S_{1},S_{2},S_{3}$. Let $O_{i}$ be circumcenter of $A_{i}B_{i}C_{i}$. Prove that $O_{i}$ are collinear.
2003 China Team Selection Test, 2
Denote by $\left(ABC\right)$ the circumcircle of a triangle $ABC$.
Let $ABC$ be an isosceles right-angled triangle with $AB=AC=1$ and $\measuredangle CAB=90^{\circ}$. Let $D$ be the midpoint of the side $BC$, and let $E$ and $F$ be two points on the side $BC$.
Let $M$ be the point of intersection of the circles $\left(ADE\right)$ and $\left(ABF\right)$ (apart from $A$).
Let $N$ be the point of intersection of the line $AF$ and the circle $\left(ACE\right)$ (apart from $A$).
Let $P$ be the point of intersection of the line $AD$ and the circle $\left(AMN\right)$.
Find the length of $AP$.
2013 NIMO Summer Contest, 12
In $\triangle ABC$, $AB = 40$, $BC = 60$, and $CA = 50$. The angle bisector of $\angle A$ intersects the circumcircle of $\triangle ABC$ at $A$ and $P$. Find $BP$.
[i]Proposed by Eugene Chen[/i]
2000 AMC 12/AHSME, 24
If circular arcs $ AC$ and $ BC$ have centers at $ B$ and $ A$, respectively, then there exists a circle tangent to both $ \stackrel{\frown}{AC}$ and $ \stackrel{\frown}{BC}$, and to $ \overline{AB}$. If the length of $ \stackrel{\frown}{BC}$ is $ 12$, then the circumference of the circle is
[asy]unitsize(4cm);
defaultpen(fontsize(8pt)+linewidth(.8pt));
dotfactor=3;
pair O=(0,.375);
pair A=(-.5,0);
pair B=(.5,0);
pair C=shift(-.5,0)*dir(60);
draw(Arc(A,1,0,60));
draw(Arc(B,1,120,180));
draw(A--B);
draw(Circle(O,.375));
dot(A);
dot(B);
dot(C);
label("$A$",A,SW);
label("$B$",B,SE);
label("$C$",C,N);[/asy]$ \textbf{(A)}\ 24 \qquad \textbf{(B)}\ 25 \qquad \textbf{(C)}\ 26 \qquad \textbf{(D)}\ 27 \qquad \textbf{(E)}\ 28$
2010 China Team Selection Test, 1
Let $\omega$ be a semicircle and $AB$ its diameter. $\omega_1$ and $\omega_2$ are two different circles, both tangent to $\omega$ and to $AB$, and $\omega_1$ is also tangent to $\omega_2$. Let $P,Q$ be the tangent points of $\omega_1$ and $\omega_2$ to $AB$ respectively, and $P$ is between $A$ and $Q$. Let $C$ be the tangent point of $\omega_1$ and $\omega$. Find $\tan\angle ACQ$.
2018 EGMO, 5
Let $\Gamma $ be the circumcircle of triangle $ABC$. A circle $\Omega$ is tangent to the line segment $AB$ and is tangent to $\Gamma$ at a point lying on the same side of the line $AB$ as $C$. The angle bisector of $\angle BCA$ intersects $\Omega$ at two different points $P$ and $Q$.
Prove that $\angle ABP = \angle QBC$.
2008 Sharygin Geometry Olympiad, 3
(V.Yasinsky, Ukraine) Suppose $ X$ and $ Y$ are the common points of two circles $ \omega_1$ and $ \omega_2$. The third circle $ \omega$ is internally tangent to $ \omega_1$ and $ \omega_2$ in $ P$ and $ Q$ respectively. Segment $ XY$ intersects $ \omega$ in points $ M$ and $ N$. Rays $ PM$ and $ PN$ intersect $ \omega_1$ in points $ A$ and $ D$; rays $ QM$ and $ QN$ intersect $ \omega_2$ in points $ B$ and $ C$ respectively. Prove that $ AB \equal{} CD$.