This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 343

2009 Singapore Team Selection Test, 1

Two circles are tangent to each other internally at a point $\ T $. Let the chord $\ AB $ of the larger circle be tangent to the smaller circle at a point $\ P $. Prove that the line $\ TP $ bisects $\ \angle ATB $.

2010 Contests, 3

Let $ I $ be the incenter of triangle $ ABC $. The incircle touches $ BC, CA, AB$ at points $ P, Q, R $. A circle passing through $ B , C $ is tangent to the circle $I$ at point $ X $, a circle passing through $ C , A $ is tangent to the circle $I$ at point $ Y $, and a circle passing through $ A , B $ is tangent to the circle $I$ at point $ Z $, respectively. Prove that three lines $ PX, QY, RZ $ are concurrent.

2011 Balkan MO Shortlist, G1

Let $ABCD$ be a convex quadrangle such that $AB=AC=BD$ (vertices are labelled in circular order). The lines $AC$ and $BD$ meet at point $O$, the circles $ABC$ and $ADO$ meet again at point $P$, and the lines $AP$ and $BC$ meet at the point $Q$. Show that the angles $COQ$ and $DOQ$ are equal.

2006 Tuymaada Olympiad, 3

A line $d$ is given in the plane. Let $B\in d$ and $A$ another point, not on $d$, and such that $AB$ is not perpendicular on $d$. Let $\omega$ be a variable circle touching $d$ at $B$ and letting $A$ outside, and $X$ and $Y$ the points on $\omega$ such that $AX$ and $AY$ are tangent to the circle. Prove that the line $XY$ passes through a fixed point. [i]Proposed by F. Bakharev [/i]

2021 Regional Olympiad of Mexico Center Zone, 5

Let $ABCD$ be a parallelogram. Half-circles $\omega_1,\omega_2,\omega_3$ and $\omega_4$ with diameters $AB,BC,CD$ and $DA$, respectively, are erected on the exterior of $ABCD$. Line $l_1$ is parallel to $BC$ and cuts $\omega_1$ at $X$, segment $AB$ at $P$, segment $CD$ at $R$ and $\omega_3$ at $Z$. Line $l_2$ is parallel to $AB$ and cuts $\omega_2$ at $Y$, segment $BC$ at $Q$, segment $DA$ at $S$ and $\omega_4$ at $W$. If $XP\cdot RZ=YQ\cdot SW$, prove that $PQRS$ is cyclic. [i]Proposed by José Alejandro Reyes González[/i]

2006 Vietnam Team Selection Test, 2

Given a non-isoceles triangle $ABC$ inscribes a circle $(O,R)$ (center $O$, radius $R$). Consider a varying line $l$ such that $l\perp OA$ and $l$ always intersects the rays $AB,AC$ and these intersectional points are called $M,N$. Suppose that the lines $BN$ and $CM$ intersect, and if the intersectional point is called $K$ then the lines $AK$ and $BC$ intersect. $1$, Assume that $P$ is the intersectional point of $AK$ and $BC$. Show that the circumcircle of the triangle $MNP$ is always through a fixed point. $2$, Assume that $H$ is the orthocentre of the triangle $AMN$. Denote $BC=a$, and $d$ is the distance between $A$ and the line $HK$. Prove that $d\leq\sqrt{4R^2-a^2}$ and the equality occurs iff the line $l$ is through the intersectional point of two lines $AO$ and $BC$.

2014 ELMO Shortlist, 6

Let $ABCD$ be a cyclic quadrilateral with center $O$. Suppose the circumcircles of triangles $AOB$ and $COD$ meet again at $G$, while the circumcircles of triangles $AOD$ and $BOC$ meet again at $H$. Let $\omega_1$ denote the circle passing through $G$ as well as the feet of the perpendiculars from $G$ to $AB$ and $CD$. Define $\omega_2$ analogously as the circle passing through $H$ and the feet of the perpendiculars from $H$ to $BC$ and $DA$. Show that the midpoint of $GH$ lies on the radical axis of $\omega_1$ and $\omega_2$. [i]Proposed by Yang Liu[/i]

2013 ELMO Shortlist, 13

In $\triangle ABC$, $AB<AC$. $D$ and $P$ are the feet of the internal and external angle bisectors of $\angle BAC$, respectively. $M$ is the midpoint of segment $BC$, and $\omega$ is the circumcircle of $\triangle APD$. Suppose $Q$ is on the minor arc $AD$ of $\omega$ such that $MQ$ is tangent to $\omega$. $QB$ meets $\omega$ again at $R$, and the line through $R$ perpendicular to $BC$ meets $PQ$ at $S$. Prove $SD$ is tangent to the circumcircle of $\triangle QDM$. [i]Proposed by Ray Li[/i]

2008 Tournament Of Towns, 4

Let $ABCD$ be a non-isosceles trapezoid. De fine a point $A1$ as intersection of circumcircle of triangle $BCD$ and line $AC$. (Choose $A_1$ distinct from $C$). Points $B_1, C_1, D_1$ are de fined in similar way. Prove that $A_1B_1C_1D_1$ is a trapezoid as well.

2023 Korea Summer Program Practice Test, P6

$AB < AC$ on $\triangle ABC$. The midpoint of arc $BC$ which doesn't include $A$ is $T$ and which includes $A$ is $S$. On segment $AB,AC$, $D,E$ exist so that $DE$ and $BC$ are parallel. The outer angle bisector of $\angle ABE$ and $\angle ACD$ meets $AS$ at $P$ and $Q$. Prove that the circumcircle of $\triangle PBE$ and $\triangle QCD$ meets on $AT$.

2010 Switzerland - Final Round, 9

Let $ k$ and $ k'$ two concentric circles centered at $ O$, with $ k'$ being larger than $ k$. A line through $ O$ intersects $ k$ at $ A$ and $ k'$ at $ B$ such that $ O$ seperates $ A$ and $ B$. Another line through $ O$ intersects $ k$ at $ E$ and $ k'$ at $ F$ such that $ E$ separates $ O$ and $ F$. Show that the circumcircle of $ \triangle{OAE}$ and the circles with diametres $ AB$ and $ EF$ have a common point.

1986 IMO Longlists, 49

Let $C_1, C_2$ be circles of radius $1/2$ tangent to each other and both tangent internally to a circle $C$ of radius $1$. The circles $C_1$ and $C_2$ are the first two terms of an infinite sequence of distinct circles $C_n$ defined as follows: $C_{n+2}$ is tangent externally to $C_n$ and $C_{n+1}$ and internally to $C$. Show that the radius of each $C_n$ is the reciprocal of an integer.

2013 AMC 12/AHSME, 19

In $ \bigtriangleup ABC $, $ AB = 86 $, and $ AC = 97 $. A circle with center $ A $ and radius $ AB $ intersects $ \overline{BC} $ at points $ B $ and $ X $. Moreover $ \overline{BX} $ and $ \overline{CX} $ have integer lengths. What is $ BC $? $ \textbf{(A)} \ 11 \qquad \textbf{(B)} \ 28 \qquad \textbf{(C)} \ 33 \qquad \textbf{(D)} \ 61 \qquad \textbf{(E)} \ 72 $

1999 China Team Selection Test, 1

A circle is tangential to sides $AB$ and $AD$ of convex quadrilateral $ABCD$ at $G$ and $H$ respectively, and cuts diagonal $AC$ at $E$ and $F$. What are the necessary and sufficient conditions such that there exists another circle which passes through $E$ and $F$, and is tangential to $DA$ and $DC$ extended?

2018 Germany Team Selection Test, 3

In triangle $ABC$, let $\omega$ be the excircle opposite to $A$. Let $D, E$ and $F$ be the points where $\omega$ is tangent to $BC, CA$, and $AB$, respectively. The circle $AEF$ intersects line $BC$ at $P$ and $Q$. Let $M$ be the midpoint of $AD$. Prove that the circle $MPQ$ is tangent to $\omega$.

2005 Junior Balkan MO, 2

Let $ABC$ be an acute-angled triangle inscribed in a circle $k$. It is given that the tangent from $A$ to the circle meets the line $BC$ at point $P$. Let $M$ be the midpoint of the line segment $AP$ and $R$ be the second intersection point of the circle $k$ with the line $BM$. The line $PR$ meets again the circle $k$ at point $S$ different from $R$. Prove that the lines $AP$ and $CS$ are parallel.

2009 Indonesia TST, 3

Let $ ABC$ be an acute triangle with $ \angle BAC\equal{}60^{\circ}$. Let $ P$ be a point in triangle $ ABC$ with $ \angle APB\equal{}\angle BPC\equal{}\angle CPA\equal{}120^{\circ}$. The foots of perpendicular from $ P$ to $ BC,CA,AB$ are $ X,Y,Z$, respectively. Let $ M$ be the midpoint of $ YZ$. a) Prove that $ \angle YXZ\equal{}60^{\circ}$ b) Prove that $ X,P,M$ are collinear.

2009 Italy TST, 2

Two circles $O_1$ and $O_2$ intersect at $M,N$. The common tangent line nearer to $M$ of the two circles touches $O_1,O_2$ at $A,B$ respectively. Let $C,D$ be the symmetric points of $A,B$ with respect to $M$ respectively. The circumcircle of triangle $DCM$ intersects circles $O_1$ and $O_2$ at points $E,F$ respectively which are distinct from $M$. Prove that the circumradii of the triangles $MEF$ and $NEF$ are equal.

1956 AMC 12/AHSME, 14

The points $ A,B,C$ are on a circle $ O$. The tangent line at $ A$ and the secant $ BC$ intersect at $ P$, $ B$ lying between $ C$ and $ P$. If $ \overline{BC} \equal{} 20$ and $ \overline{PA} \equal{} 10\sqrt {3}$, then $ \overline{PB}$ equals: $ \textbf{(A)}\ 5 \qquad\textbf{(B)}\ 10 \qquad\textbf{(C)}\ 10\sqrt {3} \qquad\textbf{(D)}\ 20 \qquad\textbf{(E)}\ 30$

2009 Portugal MO, 2

Points $N$ and $M$ are on the sides $CD$ and $BC$ of square $ABCD$, respectively. The perimeter of triangle $MCN$ is equal to the double of the length of the square's side. Find $\angle MAN$.

2010 Korea National Olympiad, 3

Let $ I $ be the incenter of triangle $ ABC $. The incircle touches $ BC, CA, AB$ at points $ P, Q, R $. A circle passing through $ B , C $ is tangent to the circle $I$ at point $ X $, a circle passing through $ C , A $ is tangent to the circle $I$ at point $ Y $, and a circle passing through $ A , B $ is tangent to the circle $I$ at point $ Z $, respectively. Prove that three lines $ PX, QY, RZ $ are concurrent.

1957 AMC 12/AHSME, 18

Circle $ O$ has diameters $ AB$ and $ CD$ perpendicular to each other. $ AM$ is any chord intersecting $ CD$ at $ P$. Then $ AP\cdot AM$ is equal to: [asy]defaultpen(linewidth(.8pt)); unitsize(2cm); pair O = origin; pair A = (-1,0); pair B = (1,0); pair C = (0,1); pair D = (0,-1); pair M = dir(45); pair P = intersectionpoint(O--C,A--M); draw(Circle(O,1)); draw(A--B); draw(C--D); draw(A--M); label("$A$",A,W); label("$B$",B,E); label("$C$",C,N); label("$D$",D,S); label("$M$",M,NE); label("$O$",O,NE); label("$P$",P,NW);[/asy]$ \textbf{(A)}\ AO\cdot OB \qquad \textbf{(B)}\ AO\cdot AB\qquad \textbf{(C)}\ CP\cdot CD \qquad \textbf{(D)}\ CP\cdot PD\qquad$ $ \textbf{(E)}\ CO\cdot OP$

2001 National Olympiad First Round, 29

Let $ABCD$ be a isosceles trapezoid such that $AB || CD$ and all of its sides are tangent to a circle. $[AD]$ touches this circle at $N$. $NC$ and $NB$ meet the circle again at $K$ and $L$, respectively. What is $\dfrac {|BN|}{|BL|} + \dfrac {|CN|}{|CK|}$? $ \textbf{(A)}\ 4 \qquad\textbf{(B)}\ 6 \qquad\textbf{(C)}\ 8 \qquad\textbf{(D)}\ 9 \qquad\textbf{(E)}\ 10 $

2010 Greece National Olympiad, 3

A triangle $ ABC$ is inscribed in a circle $ C(O,R)$ and has incenter $ I$. Lines $ AI,BI,CI$ meet the circumcircle $ (O)$ of triangle $ ABC$ at points $ D,E,F$ respectively. The circles with diameter $ ID,IE,IF$ meet the sides $ BC,CA, AB$ at pairs of points $ (A_1,A_2), (B_1, B_2), (C_1, C_2)$ respectively. Prove that the six points $ A_1,A_2, B_1, B_2, C_1, C_2$ are concyclic. Babis

2019 AIME Problems, 15

In acute triangle $ABC$ points $P$ and $Q$ are the feet of the perpendiculars from $C$ to $\overline{AB}$ and from $B$ to $\overline{AC}$, respectively. Line $PQ$ intersects the circumcircle of $\triangle ABC$ in two distinct points, $X$ and $Y$. Suppose $XP=10$, $PQ=25$, and $QY=15$. The value of $AB\cdot AC$ can be written in the form $m\sqrt n$ where $m$ and $n$ are positive integers, and $n$ is not divisible by the square of any prime. Find $m+n$.