This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1111

1979 AMC 12/AHSME, 27

An ordered pair $( b , c )$ of integers, each of which has absolute value less than or equal to five, is chosen at random, with each such ordered pair having an equal likelihood of being chosen. What is the probability that the equation $x^ 2 + bx + c = 0$ will [i]not[/i] have distinct positive real roots? $\textbf{(A) }\frac{106}{121}\qquad\textbf{(B) }\frac{108}{121}\qquad\textbf{(C) }\frac{110}{121}\qquad\textbf{(D) }\frac{112}{121}\qquad\textbf{(E) }\text{none of these}$

2012 Today's Calculation Of Integral, 786

For each positive integer $n$, define $H_n(x)=(-1)^ne^{x^2}\frac{d^n}{dx^n}e^{-x^2}.$ (1) Find $H_1(x),\ H_2(x),\ H_3(x)$. (2) Express $\frac{d}{dx}H_n(x)$ interms of $H_n(x),\ H_{n+1}(x).$ Then prove that $H_n(x)$ is a polynpmial with degree $n$ by induction. (3) Let $a$ be real number. For $n\geq 3$, express $S_n(a)=\int_0^a xH_n(x)e^{-x^2}dx$ in terms of $H_{n-1}(a),\ H_{n-2}(a),\ H_{n-2}(0)$. (4) Find $\lim_{a\to\infty} S_6(a)$. If necessary, you may use $\lim_{x\to\infty}x^ke^{-x^2}=0$ for a positive integer $k$.

2009 Math Prize For Girls Problems, 6

Tags: probability
Consider a fair coin and a fair 6-sided die. The die begins with the number 1 face up. A [i]step[/i] starts with a toss of the coin: if the coin comes out heads, we roll the die; otherwise (if the coin comes out tails), we do nothing else in this step. After 5 such steps, what is the probability that the number 1 is face up on the die?

Kvant 2024, M2815

There is a set of $2n$ chips of $n$ different colors, two chips of each color. The chips are randomly placed in a row. Prove that the probability that there are two adjacent chips of the same color in a row is greater than $1/2$. [i]From the folklore[/i]

2003 AMC 10, 15

What is the probability that an integer in the set $ \{1,2,3,\ldots,100\}$ is divisible by $ 2$ and not divisible by $ 3$? $ \textbf{(A)}\ \frac{1}{6} \qquad \textbf{(B)}\ \frac{33}{100} \qquad \textbf{(C)}\ \frac{17}{50} \qquad \textbf{(D)}\ \frac{1}{2} \qquad \textbf{(E)}\ \frac{18}{25}$

2012 Purple Comet Problems, 28

A bag contains $8$ green candies and $4$ red candies. You randomly select one candy at a time to eat. If you eat five candies, there are relatively prime positive integers $m$ and $n$ so that $\frac{m}{n}$ is the probability that you do not eat a green candy after you eat a red candy. Find $m+n$.

2004 AIME Problems, 2

A jar has 10 red candies and 10 blue candies. Terry picks two candies at random, then Mary picks two of the remaining candies at random. Given that the probability that they get the same color combination, irrespective of order, is $m/n$, where $m$ and $n$ are relatively prime positive integers, find $m+n$.

1982 AMC 12/AHSME, 25

The adjacent map is part of a city: the small rectangles are rocks, and the paths in between are streets. Each morning, a student walks from intersection A to intersection B, always walking along streets shown, and always going east or south. For variety, at each intersection where he has a choice, he chooses with probability $\frac{1}{2}$ whether to go east or south. Find the probability that through any given morning, he goes through $C$. [asy] defaultpen(linewidth(0.7)+fontsize(8)); size(250); path p=origin--(5,0)--(5,3)--(0,3)--cycle; path q=(5,19)--(6,19)--(6,20)--(5,20)--cycle; int i,j; for(i=0; i<5; i=i+1) { for(j=0; j<6; j=j+1) { draw(shift(6*i, 4*j)*p); }} clip((4,2)--(25,2)--(25,21)--(4,21)--cycle); fill(q^^shift(18,-16)*q^^shift(18,-12)*q, black); label("A", (6,19), SE); label("B", (23,4), NW); label("C", (23,8), NW); draw((26,11.5)--(30,11.5), Arrows(5)); draw((28,9.5)--(28,13.5), Arrows(5)); label("N", (28,13.5), N); label("W", (26,11.5), W); label("E", (30,11.5), E); label("S", (28,9.5), S);[/asy] $\textbf {(A) } \frac{11}{32} \qquad \textbf {(B) } \frac 12 \qquad \textbf {(C) } \frac 47 \qquad \textbf {(D) } \frac{21}{32} \qquad \textbf {(E) } \frac 34$

1973 AMC 12/AHSME, 23

Tags: probability
There are two cards; one is red on both sides and the other is red on one side and blue on the other. The cards have the same probability (1/2) of being chosen, and one is chosen and placed on the table. If the upper side of the card on the table is red, then the probability that the under-side is also red is $ \textbf{(A)}\ \frac14 \qquad \textbf{(B)}\ \frac13 \qquad \textbf{(C)}\ \frac12 \qquad \textbf{(D)}\ \frac23 \qquad \textbf{(E)}\ \frac34$

2007 AMC 12/AHSME, 12

Tags: probability
Integers $ a,$ $ b,$ $ c,$ and $ d,$ not necessarily distinct, are chosen independantly and at random from $ 0$ to $ 2007,$ inclusive. What is the probability that $ ad \minus{} bc$ is even? $ \textbf{(A)}\ \frac {3}{8}\qquad \textbf{(B)}\ \frac {7}{16}\qquad \textbf{(C)}\ \frac {1}{2}\qquad \textbf{(D)}\ \frac {9}{16}\qquad \textbf{(E)}\ \frac {5}{8}$

2019 BMT Spring, 7

Points $ A, B, C, D $ are vertices of an isosceles trapezoid, with $ \overline{AB} $ parallel to $ \overline{CD} $, $ AB = 1 $, $ CD = 2 $, and $ BC = 1 $. Point $ E $ is chosen uniformly and at random on $ \overline{CD} $, and let point $ F $ be the point on $ \overline{CD} $ such that $ EC = FD $. Let $ G $ denote the intersection of $ \overline{AE} $ and $ \overline{BF} $, not necessarily in the trapezoid. What is the probability that $ \angle AGB > 30^\circ $?

2015 AMC 8, 7

Tags: probability
Each of two boxes contains three chips numbered $1$, $2$, $3$. A chip is drawn randomly from each box and the numbers on the two chips are multiplied. What is the probability that their product is even? $\textbf{(A) }\frac{1}{9}\qquad\textbf{(B) }\frac{2}{9}\qquad\textbf{(C) }\frac{4}{9}\qquad\textbf{(D) }\frac{1}{2}\qquad \textbf{(E) }\frac{5}{9}$

2010 AMC 10, 23

Each of 2010 boxes in a line contains a single red marble, and for $ 1 \le k \le 2010$, the box in the $ kth$ position also contains $ k$ white marbles. Isabella begins at the first box and successively draws a single marble at random from each box, in order. She stops when she first draws a red marble. Let $ P(n)$ be the probability that Isabella stops after drawing exactly $ n$ marbles. What is the smallest value of $ n$ for which $ P(n) < \frac {1}{2010}$? $ \textbf{(A)}\ 45 \qquad \textbf{(B)}\ 63 \qquad \textbf{(C)}\ 64 \qquad \textbf{(D)}\ 201 \qquad \textbf{(E)}\ 1005$

2009 AMC 8, 10

Tags: probability
On a checkerboard composed of 64 unit squares, what is the probability that a randomly chosen unit square does [b] not [/b] touch the outer edge of the board? [asy] unitsize(10); draw((0,0)--(8,0)--(8,8)--(0,8)--cycle); draw((1,8)--(1,0)); draw((7,8)--(7,0)); draw((6,8)--(6,0)); draw((5,8)--(5,0)); draw((4,8)--(4,0)); draw((3,8)--(3,0)); draw((2,8)--(2,0)); draw((0,1)--(8,1)); draw((0,2)--(8,2)); draw((0,3)--(8,3)); draw((0,4)--(8,4)); draw((0,5)--(8,5)); draw((0,6)--(8,6)); draw((0,7)--(8,7)); fill((0,0)--(1,0)--(1,1)--(0,1)--cycle,black); fill((2,0)--(3,0)--(3,1)--(2,1)--cycle,black); fill((4,0)--(5,0)--(5,1)--(4,1)--cycle,black); fill((6,0)--(7,0)--(7,1)--(6,1)--cycle,black); fill((0,2)--(1,2)--(1,3)--(0,3)--cycle,black); fill((2,2)--(3,2)--(3,3)--(2,3)--cycle,black); fill((4,2)--(5,2)--(5,3)--(4,3)--cycle,black); fill((6,2)--(7,2)--(7,3)--(6,3)--cycle,black); fill((0,4)--(1,4)--(1,5)--(0,5)--cycle,black); fill((2,4)--(3,4)--(3,5)--(2,5)--cycle,black); fill((4,4)--(5,4)--(5,5)--(4,5)--cycle,black); fill((6,4)--(7,4)--(7,5)--(6,5)--cycle,black); fill((0,6)--(1,6)--(1,7)--(0,7)--cycle,black); fill((2,6)--(3,6)--(3,7)--(2,7)--cycle,black); fill((4,6)--(5,6)--(5,7)--(4,7)--cycle,black); fill((6,6)--(7,6)--(7,7)--(6,7)--cycle,black); fill((1,1)--(2,1)--(2,2)--(1,2)--cycle,black); fill((3,1)--(4,1)--(4,2)--(3,2)--cycle,black); fill((5,1)--(6,1)--(6,2)--(5,2)--cycle,black); fill((7,1)--(8,1)--(8,2)--(7,2)--cycle,black); fill((1,3)--(2,3)--(2,4)--(1,4)--cycle,black); fill((3,3)--(4,3)--(4,4)--(3,4)--cycle,black); fill((5,3)--(6,3)--(6,4)--(5,4)--cycle,black); fill((7,3)--(8,3)--(8,4)--(7,4)--cycle,black); fill((1,5)--(2,5)--(2,6)--(1,6)--cycle,black); fill((3,5)--(4,5)--(4,6)--(3,6)--cycle,black); fill((5,5)--(6,5)--(6,6)--(5,6)--cycle,black); fill((7,5)--(8,5)--(8,6)--(7,6)--cycle,black); fill((1,7)--(2,7)--(2,8)--(1,8)--cycle,black); fill((3,7)--(4,7)--(4,8)--(3,8)--cycle,black); fill((5,7)--(6,7)--(6,8)--(5,8)--cycle,black); fill((7,7)--(8,7)--(8,8)--(7,8)--cycle,black);[/asy] $ \textbf{(A)}\frac{1}{16}\qquad\textbf{(B)}\frac{7}{16}\qquad\textbf{(C)}\frac12\qquad\textbf{(D)}\frac{9}{16}\qquad\textbf{(E)}\frac{49}{64} $

2014 AMC 8, 18

Tags: probability
Four children were born at City Hospital yesterday. Assume each child is equally likely to be a boy or a girl. Which of the following outcomes is most likely? $ \textbf{(A) }\text{all 4 are boys}$\\ $\textbf{(B) }\text{all 4 are girls}$\\$ \textbf{(C) }\text{2 are girls and 2 are boys}$\\ $\textbf{(D) }\text{3 are of one gender and 1 is of the other gender}$\\ $\textbf{(E) }\text{all of these outcomes are equally likely} $

2019 PUMaC Combinatorics B, 8

The Nationwide Basketball Society (NBS) has $8001$ teams, numbered $2000$ through $10000$. For each $n$, team $n$ has $n+1$ players, and in a sheer coincidence, this year each player attempted $n$ shots and on team $n$, exactly one player made $0$ shots, one player made $1$ shot, . . ., one player made $n$ shots. A player's [i]field goal percentage[/i] is defined as the percentage of shots the player made, rounded to the nearest tenth of a percent (For instance, $32.45\%$ rounds to $32.5\%$). A player in the NBS is randomly selected among those whose field goal percentage is $66.6\%$. If this player plays for team $k$, the probability that $k\geq 6000$ can be expressed as $\tfrac{p}{q}$ for relatively prime positive integers $p$ and $q$. Find $p+q$.

2001 Stanford Mathematics Tournament, 8

Janet and Donald agree to meet for lunch between 11:30 and 12:30. They each arrive at a random time in that interval. If Janet has to wait more than 15 minutes for Donald, she gets bored and leaves. Donald is busier so will only wait 5 minutes for Janet. What is the probability that the two will eat together? Express your answer as a fraction.

2018 Brazil Undergrad MO, 15

A real number $ to $ is randomly and uniformly chosen from the $ [- 3,4] $ interval. What is the probability that all roots of the polynomial $ x ^ 3 + ax ^ 2 + ax + 1 $ are real?

2018 Harvard-MIT Mathematics Tournament, 2

Tags: probability
Twenty-seven players are randomly split into three teams of nine. Given that Zack is on a different team from Mihir and Mihir is on a different team from Andrew, what is the probability that Zack and Andrew are on the same team?

2001 AIME Problems, 11

Club Truncator is in a soccer league with six other teams, each of which it plays once. In any of its 6 matches, the probabilities that Club Truncator will win, lose, or tie are each $\frac{1}{3}$. The probability that Club Truncator will finish the season with more wins than losses is $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

2004 AMC 10, 11

Tags: probability
Two eight-sided dice each have faces numbered $ 1$ through $ 8$. When the dice are rolled, each face has an equal probability of appearing on the top. What is the probability that the product of the two top numbers is greater than their sum? $ \textbf{(A)}\ \frac{1}{2}\qquad \textbf{(B)}\ \frac{47}{64}\qquad \textbf{(C)}\ \frac{3}{4}\qquad \textbf{(D)}\ \frac{55}{64}\qquad \textbf{(E)}\ \frac{7}{8}$

1993 All-Russian Olympiad Regional Round, 10.4

Each citizen in a town knows at least $ 30$% of the remaining citizens. A citizen votes in elections if he/she knows at least one candidate. Prove that it is possible to schedule elections with two candidates for the mayor of the city so that at least $ 50$% of the citizen can vote.

2009 Math Prize For Girls Problems, 20

Let $ y_0$ be chosen randomly from $ \{0, 50\}$, let $ y_1$ be chosen randomly from $ \{40, 60, 80\}$, let $ y_2$ be chosen randomly from $ \{10, 40, 70, 80\}$, and let $ y_3$ be chosen randomly from $ \{10, 30, 40, 70, 90\}$. (In each choice, the possible outcomes are equally likely to occur.) Let $ P$ be the unique polynomial of degree less than or equal to $ 3$ such that $ P(0) \equal{} y_0$, $ P(1) \equal{} y_1$, $ P(2) \equal{} y_2$, and $ P(3) \equal{} y_3$. What is the expected value of $ P(4)$?

2013 AMC 8, 8

A fair coin is tossed 3 times. What is the probability of at least two consecutive heads? $\textbf{(A)}\ \frac18 \qquad \textbf{(B)}\ \frac14 \qquad \textbf{(C)}\ \frac38 \qquad \textbf{(D)}\ \frac12 \qquad \textbf{(E)}\ \frac34$

2004 Miklós Schweitzer, 10

Let $\mathcal{N}_p$ stand for a $p$ dimensional random variable of standard normal distribution. For $a\in\mathbb{R}^p$, let $H_p(a)$ stand for the expectation $E|\mathcal{N}_p+a|$. For $p>1$, prove that $$H_p(a)=(p-1)\int_0^{\infty} H_1\left( \frac{|a|}{\sqrt{r^2+1}}\right) \frac{r^{p-2}}{\sqrt{(r^2+1)^p}} \mathrm{d}r$$