This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 232

1997 Belarusian National Olympiad, 4

A triangle $A_1B_1C_1$ is a parallel projection of a triangle $ABC$ in space. The parallel projections $A_1H_1$ and $C_1L_1$ of the altitude $AH$ and the bisector $CL$ of $\vartriangle ABC$ respectively are drawn. Using a ruler and compass, construct a parallel projection of : (a) the orthocenter, (b) the incenter of $\vartriangle ABC$.

2014 ELMO Shortlist, 2

$ABCD$ is a cyclic quadrilateral inscribed in the circle $\omega$. Let $AB \cap CD = E$, $AD \cap BC = F$. Let $\omega_1, \omega_2$ be the circumcircles of $AEF, CEF$, respectively. Let $\omega \cap \omega_1 = G$, $\omega \cap \omega_2 = H$. Show that $AC, BD, GH$ are concurrent. [i]Proposed by Yang Liu[/i]

2010 Contests, 3

Let $A_1A_2A_3A_4$ be a quadrilateral with no pair of parallel sides. For each $i=1, 2, 3, 4$, define $\omega_1$ to be the circle touching the quadrilateral externally, and which is tangent to the lines $A_{i-1}A_i, A_iA_{i+1}$ and $A_{i+1}A_{i+2}$ (indices are considered modulo $4$ so $A_0=A_4, A_5=A_1$ and $A_6=A_2$). Let $T_i$ be the point of tangency of $\omega_i$ with the side $A_iA_{i+1}$. Prove that the lines $A_1A_2, A_3A_4$ and $T_2T_4$ are concurrent if and only if the lines $A_2A_3, A_4A_1$ and $T_1T_3$ are concurrent. [i]Pavel Kozhevnikov, Russia[/i]

Indonesia MO Shortlist - geometry, g6.2

Given an acute triangle $ABC$ with $AC>BC$ and the circumcenter of triangle $ABC$ is $O$. The altitude of triangle $ABC$ from $C$ intersects $AB$ and the circumcircle at $D$ and $E$, respectively. A line which passed through $O$ which is parallel to $AB$ intersects $AC$ at $F$. Show that the line $CO$, the line which passed through $F$ and perpendicular to $AC$, and the line which passed through $E$ and parallel with $DO$ are concurrent. [i]Fajar Yuliawan, Bandung[/i]

2007 Germany Team Selection Test, 3

Circles $ w_{1}$ and $ w_{2}$ with centres $ O_{1}$ and $ O_{2}$ are externally tangent at point $ D$ and internally tangent to a circle $ w$ at points $ E$ and $ F$ respectively. Line $ t$ is the common tangent of $ w_{1}$ and $ w_{2}$ at $ D$. Let $ AB$ be the diameter of $ w$ perpendicular to $ t$, so that $ A, E, O_{1}$ are on the same side of $ t$. Prove that lines $ AO_{1}$, $ BO_{2}$, $ EF$ and $ t$ are concurrent.

2014 ELMO Shortlist, 3

Let $A_1A_2A_3 \cdots A_{2013}$ be a cyclic $2013$-gon. Prove that for every point $P$ not the circumcenter of the $2013$-gon, there exists a point $Q\neq P$ such that $\frac{A_iP}{A_iQ}$ is constant for $i \in \{1, 2, 3, \cdots, 2013\}$. [i]Proposed by Robin Park[/i]

1977 IMO Longlists, 55

Through a point $O$ on the diagonal $BD$ of a parallelogram $ABCD$, segments $MN$ parallel to $AB$, and $PQ$ parallel to $AD$, are drawn, with $M$ on $AD$, and $Q$ on $AB$. Prove that diagonals $AO,BP,DN$ (extended if necessary) will be concurrent.

2012 ELMO Shortlist, 10

Let $A_1A_2A_3A_4A_5A_6A_7A_8$ be a cyclic octagon. Let $B_i$ by the intersection of $A_iA_{i+1}$ and $A_{i+3}A_{i+4}$. (Take $A_9 = A_1$, $A_{10} = A_2$, etc.) Prove that $B_1, B_2, \ldots , B_8$ lie on a conic. [i]David Yang.[/i]

1990 Balkan MO, 3

Let $ABC$ be an acute triangle and let $A_{1}, B_{1}, C_{1}$ be the feet of its altitudes. The incircle of the triangle $A_{1}B_{1}C_{1}$ touches its sides at the points $A_{2}, B_{2}, C_{2}$. Prove that the Euler lines of triangles $ABC$ and $A_{2}B_{2}C_{2}$ coincide.

2020 Brazil Team Selection Test, 3

Let $ABCD$ be a quadrilateral with a incircle $\omega$. Let $I$ be the center of $\omega$, suppose that the lines $AD$ and $BC$ intersect at $Q$ and the lines $AB$ and $CD$ intersect at $P$ with $B$ is in the segment $AP$ and $D$ is in the segment $AQ$. Let $X$ and $Y$ the incenters of $\triangle PBD$ and $\triangle QBD$ respectively. Let $R$ be the intersection of $PY$ and $QX$. Prove that the line $IR$ is perpendicular to $BD$.

2014 Contests, 4

In triangle $ABC$ let $A'$, $B'$, $C'$ respectively be the midpoints of the sides $BC$, $CA$, $AB$. Furthermore let $L$, $M$, $N$ be the projections of the orthocenter on the three sides $BC$, $CA$, $AB$, and let $k$ denote the nine-point circle. The lines $AA'$, $BB'$, $CC'$ intersect $k$ in the points $D$, $E$, $F$. The tangent lines on $k$ in $D$, $E$, $F$ intersect the lines $MN$, $LN$ and $LM$ in the points $P$, $Q$, $R$. Prove that $P$, $Q$ and $R$ are collinear.

2000 Macedonia National Olympiad, 1

Let $AB$ be a diameter of a circle with centre $O$, and $CD$ be a chord perpendicular to $AB$. A chord $AE$ intersects $CO$ at $M$, while $DE$ and $BC$ intersect at $N$. Prove that $CM:CO=CN:CB$.

2003 China Team Selection Test, 2

Denote by $\left(ABC\right)$ the circumcircle of a triangle $ABC$. Let $ABC$ be an isosceles right-angled triangle with $AB=AC=1$ and $\measuredangle CAB=90^{\circ}$. Let $D$ be the midpoint of the side $BC$, and let $E$ and $F$ be two points on the side $BC$. Let $M$ be the point of intersection of the circles $\left(ADE\right)$ and $\left(ABF\right)$ (apart from $A$). Let $N$ be the point of intersection of the line $AF$ and the circle $\left(ACE\right)$ (apart from $A$). Let $P$ be the point of intersection of the line $AD$ and the circle $\left(AMN\right)$. Find the length of $AP$.

2021 Brazil National Olympiad, 3

Let $ABC$ be a scalene triangle and $\omega$ is your incircle. The sides $BC,CA$ and $AB$ are tangents to $\omega$ in $X,Y,Z$ respectively. Let $M$ be the midpoint of $BC$ and $D$ is the intersection point of $BC$ with the angle bisector of $\angle BAC$. Prove that $\angle BAX=\angle MAC$ if and only if $YZ$ passes by the midpoint of $AD$.

2013 ELMO Shortlist, 9

Let $ABCD$ be a cyclic quadrilateral inscribed in circle $\omega$ whose diagonals meet at $F$. Lines $AB$ and $CD$ meet at $E$. Segment $EF$ intersects $\omega$ at $X$. Lines $BX$ and $CD$ meet at $M$, and lines $CX$ and $AB$ meet at $N$. Prove that $MN$ and $BC$ concur with the tangent to $\omega$ at $X$. [i]Proposed by Allen Liu[/i]

2007 China Western Mathematical Olympiad, 3

Let $ P$ be an interior point of an acute angled triangle $ ABC$. The lines $ AP,BP,CP$ meet $ BC,CA,AB$ at points $ D,E,F$ respectively. Given that triangle $ \triangle DEF$ and $ \triangle ABC$ are similar, prove that $ P$ is the centroid of $ \triangle ABC$.

2010 Romanian Master of Mathematics, 3

Let $A_1A_2A_3A_4$ be a quadrilateral with no pair of parallel sides. For each $i=1, 2, 3, 4$, define $\omega_1$ to be the circle touching the quadrilateral externally, and which is tangent to the lines $A_{i-1}A_i, A_iA_{i+1}$ and $A_{i+1}A_{i+2}$ (indices are considered modulo $4$ so $A_0=A_4, A_5=A_1$ and $A_6=A_2$). Let $T_i$ be the point of tangency of $\omega_i$ with the side $A_iA_{i+1}$. Prove that the lines $A_1A_2, A_3A_4$ and $T_2T_4$ are concurrent if and only if the lines $A_2A_3, A_4A_1$ and $T_1T_3$ are concurrent. [i]Pavel Kozhevnikov, Russia[/i]

2008 Iran MO (3rd Round), 3

Let $ ABCD$ be a quadrilateral, and $ E$ be intersection points of $ AB,CD$ and $ AD,BC$ respectively. External bisectors of $ DAB$ and $ DCB$ intersect at $ P$, external bisectors of $ ABC$ and $ ADC$ intersect at $ Q$ and external bisectors of $ AED$ and $ AFB$ intersect at $ R$. Prove that $ P,Q,R$ are collinear.

2009 German National Olympiad, 5

Let a triangle $ ABC$. $ E,F$ in segment $ AB$ so that $ E$ lie between $ AF$ and half of circle with diameter $ EF$ is tangent with $ BC,CA$ at $ G,H$. $ HF$ cut $ GE$ at $ S$, $ HE$ cut $ FG$ at $ T$. Prove that $ C$ is midpoint of $ ST$.

2008 Singapore Team Selection Test, 1

Let $(O)$ be a circle, and let $ABP$ be a line segment such that $A,B$ lie on $(O)$ and $P$ is a point outside $(O)$. Let $C$ be a point on $(O)$ such that $PC$ is tangent to $(O)$ and let $D$ be the point on $(O)$ such that $CD$ is a diameter of $(O)$ and intersects $AB$ inside $(O)$. Suppose that the lines $DB$ and $OP$ intersect at $E$. Prove that $AC$ is perpendicular to $CE$.

2007 China Team Selection Test, 2

Let $ ABCD$ be the inscribed quadrilateral with the circumcircle $ \omega$.Let $ \zeta$ be another circle that internally tangent to $ \omega$ and to the lines $ BC$ and $ AD$ at points $ M,N$ respectively.Let $ I_1,I_2$ be the incenters of the $ \triangle ABC$ and $ \triangle ABD$.Prove that $ M,I_1,I_2,N$ are collinear.

2008 China Team Selection Test, 1

Let $ ABC$ be a triangle, let $ AB > AC$. Its incircle touches side $ BC$ at point $ E$. Point $ D$ is the second intersection of the incircle with segment $ AE$ (different from $ E$). Point $ F$ (different from $ E$) is taken on segment $ AE$ such that $ CE \equal{} CF$. The ray $ CF$ meets $ BD$ at point $ G$. Show that $ CF \equal{} FG$.

2001 Macedonia National Olympiad, 3

Let $ABC$ be a scalene triangle and $k$ be its circumcircle. Let $t_A,t_B,t_C$ be the tangents to $k$ at $A, B, C,$ respectively. Prove that points $AB\cap t_C$, $CA\cap t_B$, and $BC\cap t_A$ exist, and that they are collinear.

2011 Tuymaada Olympiad, 2

A circle passing through the vertices $A$ and $B$ of a cyclic quadrilateral $ABCD$ intersects diagonals $AC$ and $BD$ at $E$ and $F$, respectively. The lines $AF$ and $BC$ meet at a point $P$, and the lines $BE$ and $AD$ meet at a point $Q$. Prove that $PQ$ is parallel to $CD$.

2014 ELMO Shortlist, 2

$ABCD$ is a cyclic quadrilateral inscribed in the circle $\omega$. Let $AB \cap CD = E$, $AD \cap BC = F$. Let $\omega_1, \omega_2$ be the circumcircles of $AEF, CEF$, respectively. Let $\omega \cap \omega_1 = G$, $\omega \cap \omega_2 = H$. Show that $AC, BD, GH$ are concurrent. [i]Proposed by Yang Liu[/i]