Found problems: 216
2007 Stanford Mathematics Tournament, 13
A rope of length 10 [i]m[/i] is tied tautly from the top of a flagpole to the ground 6 [i]m[/i] away from the base of the pole. An ant crawls up the rope and its shadow moves at a rate of 30 [i]cm/min[/i]. How many meters above the ground is the ant after 5 minutes? (This takes place on the summer solstice on the Tropic of Cancer so that the sun is directly overhead.)
2011 Purple Comet Problems, 15
A pyramid has a base which is an equilateral triangle with side length $300$ centimeters. The vertex of the pyramid is $100$ centimeters above the center of the triangular base. A mouse starts at a corner of the base of the pyramid and walks up the edge of the pyramid toward the vertex at the top. When the mouse has walked a distance of $134$ centimeters, how many centimeters above the base of the pyramid is the mouse?
2014 AIME Problems, 8
Circle $C$ with radius $2$ has diameter $\overline{AB}$. Circle $D$ is internally tangent to circle $C$ at $A$. Circle $E$ is internally tangent to circle $C,$ externally tangent to circle $D,$ and tangent to $\overline{AB}$. The radius of circle $D$ is three times the radius of circle $E$ and can be written in the form $\sqrt{m} - n,$ where $m$ and $n$ are positive integers. Find $m+n$.
1976 AMC 12/AHSME, 24
[asy]
size(150);
pair A=(0,0),B=(1,0),C=(0,1),D=(-1,0),E=(0,.5),F=(sqrt(2)/2,.25);
draw(circle(A,1)^^D--B);
draw(circle(E,.5)^^circle( F ,.25));
label("$A$", D, W);
label("$K$", A, S);
label("$B$", B, dir(0));
label("$L$", E, N);
label("$M$",shift(-.05,.05)*F);
//Credit to Klaus-Anton for the diagram[/asy]
In the adjoining figure, circle $\mathit{K}$ has diameter $\mathit{AB}$; cirlce $\mathit{L}$ is tangent to circle $\mathit{K}$ and to $\mathit{AB}$ at the center of circle $\mathit{K}$; and circle $\mathit{M}$ tangent to circle $\mathit{K}$, to circle $\mathit{L}$ and $\mathit{AB}$. The ratio of the area of circle $\mathit{K}$ to the area of circle $\mathit{M}$ is
$\textbf{(A) }12\qquad\textbf{(B) }14\qquad\textbf{(C) }16\qquad\textbf{(D) }18\qquad \textbf{(E) }\text{not an integer}$
2007 AIME Problems, 13
A square pyramid with base $ABCD$ and vertex $E$ has eight edges of length 4. A plane passes through the midpoints of $\overline{AE}$, $\overline{BC}$, and $\overline{CD}$. The plane's intersection with the pyramid has an area that can be expressed as $\sqrt{p}$. Find $p$.
1953 AMC 12/AHSME, 41
A girls' camp is located $ 300$ rods from a straight road. On this road, a boys' camp is located $ 500$ rods from the girls' camp. It is desired to build a canteen on the road which shall be exactly the same distance from each camp. The distance of the canteen from each of the camps is:
$ \textbf{(A)}\ 400\text{ rods} \qquad\textbf{(B)}\ 250\text{ rods} \qquad\textbf{(C)}\ 87.5\text{ rods} \qquad\textbf{(D)}\ 200\text{ rods}\\
\textbf{(E)}\ \text{none of these}$
2006 AIME Problems, 1
In quadrilateral $ABCD, \angle B$ is a right angle, diagonal $\overline{AC}$ is perpendicular to $\overline{CD},$ $AB=18, BC=21,$ and $CD=14.$ Find the perimeter of $ABCD$.
1979 AMC 12/AHSME, 28
Circles with centers $A ,~ B,$ and $C$ each have radius $r$, where $1 < r < 2$. The distance between each pair of centers is $2$. If $B'$ is the point of intersection of circle $A$ and circle $C$ which is outside circle $B$, and if $C'$ is the point of intersection of circle $A$ and circle $B$ which is outside circle $C$, then length $B'C'$ equals
$\textbf{(A) }3r-2\qquad\textbf{(B) }r^2\qquad\textbf{(C) }r+\sqrt{3(r-1)}\qquad$
$\textbf{(D) }1+\sqrt{3(r^2-1)}\qquad\textbf{(E) }\text{none of these}$
[asy]
//Holy crap, CSE5 is freaking amazing!
import cse5;
pathpen=black;
pointpen=black;
dotfactor=3;
size(200);
pair A=(1,2),B=(2,0),C=(0,0);
D(CR(A,1.5));
D(CR(B,1.5));
D(CR(C,1.5));
D(MP("$A$",A));
D(MP("$B$",B));
D(MP("$C$",C));
pair[] BB,CC;
CC=IPs(CR(A,1.5),CR(B,1.5));
BB=IPs(CR(A,1.5),CR(C,1.5));
D(BB[0]--CC[1]);
MP("$B'$",BB[0],NW);MP("$C'$",CC[1],NE);
//Credit to TheMaskedMagician for the diagram
[/asy]
2009 AMC 12/AHSME, 9
Triangle $ ABC$ has vertices $ A\equal{}(3,0)$, $ B\equal{}(0,3)$, and $ C$, where $ C$ is on the line $ x\plus{}y\equal{}7$. What is the area of $ \triangle ABC$?
$ \textbf{(A)}\ 6\qquad
\textbf{(B)}\ 8\qquad
\textbf{(C)}\ 10\qquad
\textbf{(D)}\ 12\qquad
\textbf{(E)}\ 14$
1996 Canadian Open Math Challenge, 7
Triangle $ABC$ is right angled at $A$. The circle with center $A$ and radius $AB$ cuts $BC$ and $AC$ internally at $D$ and $E$ respectively. If $BD = 20$ and $DC = 16$, determine $AC^2$.
2008 Stanford Mathematics Tournament, 15
While out for a stroll, you encounter a vicious velociraptor. You start running away to the northeast at $ 10 \text{m/s}$, and you manage a three-second head start over the raptor. If the raptor runs at $ 15\sqrt{2} \text{m/s}$, but only runs either north or east at any given time, how many seconds do you have until it devours you?
1984 IMO Longlists, 44
Let $a,b,c$ be positive numbers with $\sqrt{a}+\sqrt{b}+\sqrt{c}= \frac{\sqrt{3}}{2}$
Prove that the system of equations
\[\sqrt{y-a}+\sqrt{z-a}=1\]
\[\sqrt{z-b}+\sqrt{x-b}=1\]
\[\sqrt{x-c}+\sqrt{y-c}=1\]
has exactly one solution $(x,y,z)$ in real numbers.
It was proposed by Poland. Have fun! :lol:
1986 IMO Shortlist, 3
Let $A, B$, and $C$ be three points on the edge of a circular chord such that $B$ is due west of $C$ and $ABC$ is an equilateral triangle whose side is $86$ meters long. A boy swam from $A$ directly toward $B$. After covering a distance of $x$ meters, he turned and swam westward, reaching the shore after covering a distance of $y$ meters. If $x$ and $y$ are both positive integers, determine $y.$
2012 AMC 8, 25
A square with area 4 is inscribed in a square with area 5, with one vertex of the smaller square on each side of the larger square. A vertex of the smaller square divides a side of the larger square into two segments, one of length $a$, and the other of length $b$. What is the value of $ab$ ?
[asy]
draw((0,2)--(2,2)--(2,0)--(0,0)--cycle);
draw((0,0.3)--(0.3,2)--(2,1.7)--(1.7,0)--cycle);
label("$a$",(-0.1,0.15));
label("$b$",(-0.1,1.15));
[/asy]
$\textbf{(A)}\hspace{.05in}\dfrac15 \qquad \textbf{(B)}\hspace{.05in}\dfrac25 \qquad \textbf{(C)}\hspace{.05in}\dfrac12 \qquad \textbf{(D)}\hspace{.05in}1 \qquad \textbf{(E)}\hspace{.05in}4 $
2010 Purple Comet Problems, 23
A disk with radius $10$ and a disk with radius $8$ are drawn so that the distance between their centers is $3$. Two congruent small circles lie in the intersection of the two disks so that they are tangent to each other and to each of the larger circles as shown. The radii of the smaller circles are both $\tfrac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
[asy]
size(150);
defaultpen(linewidth(1));
draw(circle(origin,10)^^circle((3,0),8)^^circle((5,15/4),15/4)^^circle((5,-15/4),15/4));
[/asy]
2009 Harvard-MIT Mathematics Tournament, 1
A rectangular piece of paper with side lengths 5 by 8 is folded along the dashed lines shown below, so that the folded flaps just touch at the corners as shown by the dotted lines. Find the area of the resulting trapezoid.
[asy]
size(150);
defaultpen(linewidth(0.8));
draw(origin--(8,0)--(8,5)--(0,5)--cycle,linewidth(1));
draw(origin--(8/3,5)^^(16/3,5)--(8,0),linetype("4 4"));
draw(origin--(4,3)--(8,0)^^(8/3,5)--(4,3)--(16/3,5),linetype("0 4"));
label("$5$",(0,5/2),W);
label("$8$",(4,0),S);
[/asy]
1982 AMC 12/AHSME, 14
In the adjoining figure, points $B$ and $C$ lie on line segment $AD$, and $AB$, $BC$, and $CD$ are diameters of circle $O$, $N$, and $P$, respectively. Circles $O$, $N$, and $P$ all have radius $15$ and the line $AG$ is tangent to circle $P$ at $G$. If $AG$ intersects circle $N$ at points $E$ and $F$, then chord $EF$ has length
[asy]
size(250);
defaultpen(fontsize(10));
pair A=origin, O=(1,0), B=(2,0), N=(3,0), C=(4,0), P=(5,0), D=(6,0), G=tangent(A,P,1,2), E=intersectionpoints(A--G, Circle(N,1))[0], F=intersectionpoints(A--G, Circle(N,1))[1];
draw(Circle(O,1)^^Circle(N,1)^^Circle(P,1)^^G--A--D, linewidth(0.7));
dot(A^^B^^C^^D^^E^^F^^G^^O^^N^^P);
label("$A$", A, W);
label("$B$", B, SE);
label("$C$", C, NE);
label("$D$", D, dir(0));
label("$P$", P, S);
label("$N$", N, S);
label("$O$", O, S);
label("$E$", E, dir(120));
label("$F$", F, NE);
label("$G$", G, dir(100));[/asy]
$\textbf {(A) } 20 \qquad \textbf {(B) } 15\sqrt{2} \qquad \textbf {(C) } 24 \qquad \textbf{(D) } 25 \qquad \textbf {(E) } \text{none of these}$
1988 Iran MO (2nd round), 2
In tetrahedron $ABCD$ let $h_a, h_b, h_c$ and $h_d$ be the lengths of the altitudes from each vertex to the opposite side of that vertex. Prove that
\[\frac{1}{h_a} <\frac{1}{h_b}+\frac{1}{h_c}+\frac{1}{h_d}.\]
2011 AMC 12/AHSME, 15
The circular base of a hemisphere of radius $2$ rests on the base of a square pyramid of height $6$. The hemisphere is tangent to the other four faces of the pyramid. What is the edge-length of the base of the pyramid?
$ \textbf{(A)}\ 3\sqrt{2} \qquad
\textbf{(B)}\ \frac{13}{3} \qquad
\textbf{(C)}\ 4\sqrt{2} \qquad
\textbf{(D)}\ 6 \qquad
\textbf{(E)}\ \frac{13}{2}
$
1991 AMC 12/AHSME, 22
Two circles are externally tangent. Lines $\overline{PAB}$ and $\overline{PA'B'}$ are common tangents with $A$ and $A'$ on the smaller circle and $B$ and $B'$ on the larger circle. If $PA = AB = 4$, then the area of the smaller circle is
[asy]
size(250);
defaultpen(fontsize(10pt)+linewidth(.8pt));
pair O=origin, Q=(0,-3sqrt(2)), P=(0,-6sqrt(2)), A=(-4/3,3.77-6sqrt(2)), B=(-8/3,7.54-6sqrt(2)), C=(4/3,3.77-6sqrt(2)), D=(8/3,7.54-6sqrt(2));
draw(Arc(O,2sqrt(2),0,360));
draw(Arc(Q,sqrt(2),0,360));
dot(A);
dot(B);
dot(C);
dot(D);
dot(P);
draw(B--A--P--C--D);
label("$A$",A,dir(A));
label("$B$",B,dir(B));
label("$A'$",C,dir(C));
label("$B'$",D,dir(D));
label("$P$",P,S);[/asy]
$ \textbf{(A)}\ 1.44\pi\qquad\textbf{(B)}\ 2\pi\qquad\textbf{(C)}\ 2.56\pi\qquad\textbf{(D)}\ \sqrt{8}\pi\qquad\textbf{(E)}\ 4\pi $
2012 AMC 10, 17
Jesse cuts a circular paper disk of radius $12$ along two radii to form two sectors, the smaller having a central angle of $120$ degrees. He makes two circular cones, using each sector to form the lateral surface of a cone. What is the ratio of the volume of the smaller cone to that of the larger?
$ \textbf{(A)}\ \frac{1}{8} \qquad\textbf{(B)}\ \frac{1}{4} \qquad\textbf{(C)}\ \frac{\sqrt{10}}{10} \qquad\textbf{(D)}\ \frac{\sqrt{5}}{6} \qquad\textbf{(E)}\ \frac{\sqrt{10}}{5} $
2012 AMC 12/AHSME, 18
Triangle $ABC$ has $AB=27$, $AC=26$, and $BC=25$. Let $I$ denote the intersection of the internal angle bisectors of $\triangle ABC$. What is $BI$?
$ \textbf{(A)}\ 15\qquad\textbf{(B)}\ 5+\sqrt{26}+3\sqrt{3}\qquad\textbf{(C)}\ 3\sqrt{26}\qquad\textbf{(D)}\ \frac{2}{3}\sqrt{546}\qquad\textbf{(E)}\ 9\sqrt{3} $
2005 Finnish National High School Mathematics Competition, 1
In the figure below, the centres of four squares have been connected by two line
segments. Prove that these line segments are perpendicular.
2015 AMC 12/AHSME, 16
A regular hexagon with sides of length $6$ has an isosceles triangle attached to each side. Each of these triangles has two sides of length $8$. The isosceles triangles are folded to make a pyramid with the hexagon as the base of the pyramid. What is the volume of the pyramid?
$\textbf{(A) }18\qquad\textbf{(B) }162\qquad\textbf{(C) }36\sqrt{21}\qquad\textbf{(D) }18\sqrt{138}\qquad\textbf{(E) }54\sqrt{21}$
2014 AMC 12/AHSME, 9
Convex quadrilateral $ABCD$ has $AB = 3, BC = 4, CD = 13, AD = 12,$ and $\angle ABC = 90^\circ,$ as shown. What is the area of the quadrilateral?
[asy]
unitsize(.4cm);
defaultpen(linewidth(.8pt)+fontsize(14pt));
dotfactor=2;
pair A,B,C,D;
C = (0,0);
B = (0,4);
A = (3,4);
D = (12.8,-2.8);
draw(C--B--A--D--cycle);
draw(rightanglemark(C,B,A,20));
dot("$A$",A,N);
dot("$B$",B,NW);
dot("$C$",C,SW);
dot("$D$",D,E);
[/asy]
$ \textbf{(A)}\ 30 \qquad
\textbf{(B)}\ 36 \qquad
\textbf{(C)}\ 40 \qquad
\textbf{(D)}\ 48 \qquad
\textbf{(E)}\ 58.5 $