Found problems: 1148
1994 All-Russian Olympiad, 1
Let be given three quadratic polynomials:
$P_1(x) = x^2 + p_1x+q_1, P_2(x) = x^2+ p_2x+q_2, P_3(x) = x^2 + p_3x+q_3$.
Prove that the equation $|P_1(x)|+|P_2(x)| = |P_3(x)|$ has at most eight real roots.
2010 Romania National Olympiad, 1
Let $(a_n)_{n\ge0}$ be a sequence of positive real numbers such that
\[\sum_{k=0}^nC_n^ka_ka_{n-k}=a_n^2,\ \text{for any }n\ge 0.\]
Prove that $(a_n)_{n\ge0}$ is a geometric sequence.
[i]Lucian Dragomir[/i]
2007 AMC 12/AHSME, 21
The sum of the zeros, the product of the zeros, and the sum of the coefficients of the function $ f(x) \equal{} ax^{2} \plus{} bx \plus{} c$ are equal. Their common value must also be which of the following?
$ \textbf{(A)}\ \text{the coefficient of }x^{2}\qquad \textbf{(B)}\ \text{the coefficient of }x$
$ \textbf{(C)}\ \text{the y \minus{} intercept of the graph of }y \equal{} f(x)$
$ \textbf{(D)}\ \text{one of the x \minus{} intercepts of the graph of }y \equal{} f(x)$
$ \textbf{(E)}\ \text{the mean of the x \minus{} intercepts of the graph of }y \equal{} f(x)$
1954 Moscow Mathematical Olympiad, 285
The absolute values of all roots of the quadratic equation $x^2+Ax+B = 0$ and $x^2+Cx+D = 0$ are less then $1$. Prove that so are absolute values of the roots of the quadratic equation $x^2 + \frac{A + C}{2} x + \frac{B + D}{2} = 0$.
1964 AMC 12/AHSME, 21
If $\log_{b^2}x+\log_{x^2}b=1, b>0, b \neq 1, x \neq 1$, then $x$ equals:
$ \textbf{(A)}\ 1/b^2 \qquad\textbf{(B)}\ 1/b \qquad\textbf{(C)}\ b^2 \qquad\textbf{(D)}\ b \qquad\textbf{(E)}\ \sqrt{b} $
Oliforum Contest IV 2013, 5
Let $x,y,z$ be distinct positive integers such that $(y+z)(z+x)=(x+y)^2$ . Show that \[x^2+y^2>8(x+y)+2(xy+1).\] (Paolo Leonetti)
2008 AIME Problems, 11
In triangle $ ABC$, $ AB \equal{} AC \equal{} 100$, and $ BC \equal{} 56$. Circle $ P$ has radius $ 16$ and is tangent to $ \overline{AC}$ and $ \overline{BC}$. Circle $ Q$ is externally tangent to $ P$ and is tangent to $ \overline{AB}$ and $ \overline{BC}$. No point of circle $ Q$ lies outside of $ \triangle ABC$. The radius of circle $ Q$ can be expressed in the form $ m \minus{} n\sqrt {k}$, where $ m$, $ n$, and $ k$ are positive integers and $ k$ is the product of distinct primes. Find $ m \plus{} nk$.
2012 Math Prize For Girls Problems, 14
Let $k$ be the smallest positive integer such that the binomial coefficient $\binom{10^9}{k}$ is less than the binomial coefficient $\binom{10^9 + 1}{k - 1}$. Let $a$ be the first (from the left) digit of $k$ and let $b$ be the second (from the left) digit of $k$. What is the value of $10a + b$?
2010 AIME Problems, 6
Let $ P(x)$ be a quadratic polynomial with real coefficients satisfying \[x^2 \minus{} 2x \plus{} 2 \le P(x) \le 2x^2 \minus{} 4x \plus{} 3\] for all real numbers $ x$, and suppose $ P(11) \equal{} 181$. Find $ P(16)$.
2004 Regional Olympiad - Republic of Srpska, 3
Determine all pairs of positive integers $(a,b)$, such that the roots of the equations \[x^2-ax+a+b-3=0,\]
\[x^2-bx+a+b-3=0,\] are also positive integers.
1951 AMC 12/AHSME, 22
The values of $ a$ in the equation: $ \log_{10}(a^2 \minus{} 15a) \equal{} 2$ are:
$ \textbf{(A)}\ \frac {15\pm\sqrt {233}}{2} \qquad\textbf{(B)}\ 20, \minus{} 5 \qquad\textbf{(C)}\ \frac {15 \pm \sqrt {305}}{2}$
$ \textbf{(D)}\ \pm20 \qquad\textbf{(E)}\ \text{none of these}$
2011 Middle European Mathematical Olympiad, 1
Initially, only the integer $44$ is written on a board. An integer a on the board can be re- placed with four pairwise different integers $a_1, a_2, a_3, a_4$ such that the arithmetic mean $\frac 14 (a_1 + a_2 + a_3 + a_4)$ of the four new integers is equal to the number $a$. In a step we simultaneously replace all the integers on the board in the above way. After $30$ steps we end up with $n = 4^{30}$ integers $b_1, b2,\ldots, b_n$ on the board. Prove that
\[\frac{b_1^2 + b_2^2+b_3^2+\cdots+b_n^2}{n}\geq 2011.\]
2013 Online Math Open Problems, 42
Find the remainder when \[\prod_{i=0}^{100}(1-i^2+i^4)\] is divided by $101$.
[i]Victor Wang[/i]
2001 All-Russian Olympiad, 1
Two monic quadratic trinomials $f(x)$ and $g(x)$ take negative values on disjoint intervals. Prove that there exist positive numbers $\alpha$ and $\beta$ such that $\alpha f(x) + \beta g(x) > 0$ for all real $x$.
PEN P Problems, 15
Find all integers $m>1$ such that $m^3$ is a sum of $m$ squares of consecutive integers.
2001 Tuymaada Olympiad, 3
Do there exist quadratic trinomials $P, \ \ Q, \ \ R$ such that for every integers $x$ and $y$ an integer $z$ exists satisfying $P(x)+Q(y)=R(z)?$
[i]Proposed by A. Golovanov[/i]
2014 EGMO, 6
Determine all functions $f:\mathbb R\rightarrow\mathbb R$ satisfying the condition
\[f(y^2+2xf(y)+f(x)^2)=(y+f(x))(x+f(y))\]
for all real numbers $x$ and $y$.
2007 China Team Selection Test, 3
Prove that for any positive integer $ n$, there exists only $ n$ degree polynomial $ f(x),$ satisfying $ f(0) \equal{} 1$ and $ (x \plus{} 1)[f(x)]^2 \minus{} 1$ is an odd function.
1990 AIME Problems, 4
Find the positive solution to \[ \frac 1{x^2-10x-29}+\frac1{x^2-10x-45}-\frac 2{x^2-10x-69}=0 \]
2014 Contests, 1
Find all the polynomials with real coefficients which satisfy $ (x^2-6x+8)P(x)=(x^2+2x)P(x-2)$ for all $x\in \mathbb{R}$.
2012 Bosnia Herzegovina Team Selection Test, 3
Prove that for all odd prime numbers $p$ there exist a natural number $m<p$ and integers $x_1, x_2, x_3$ such that:
\[mp=x_1^2+x_2^2+x_3^2.\]
1989 AMC 12/AHSME, 28
Find the sum of the roots of $\tan^2x-9\tan x+1=0$ that are between $x=0$ and $x=2\pi$ radians.
$ \textbf{(A)}\ \frac{\pi}{2} \qquad\textbf{(B)}\ \pi \qquad\textbf{(C)}\ \frac{3\pi}{2} \qquad\textbf{(D)}\ 3\pi \qquad\textbf{(E)}\ 4\pi $
1995 IberoAmerican, 2
Let $n$ be a positive integer greater than 1. Determine all the collections of real numbers $x_1,\ x_2,\dots,\ x_n\geq1\mbox{ and }x_{n+1}\leq0$ such that the next two conditions hold:
(i) $x_1^{\frac12}+x_2^{\frac32}+\cdots+x_n^{n-\frac12}= nx_{n+1}^\frac12$
(ii) $\frac{x_1+x_2+\cdots+x_n}{n}=x_{n+1}$
2008 AMC 10, 25
A round table has radius $ 4$. Six rectangular place mats are placed on the table. Each place mat has width $ 1$ and length $ x$ as shown. They are positioned so that each mat has two corners on the edge of the table, these two corners being end points of the same side of length $ x$. Further, the mats are positioned so that the inner corners each touch an inner corner of an adjacent mat. What is $ x$?
[asy]unitsize(4mm);
defaultpen(linewidth(.8)+fontsize(8));
draw(Circle((0,0),4));
path mat=(-2.687,-1.5513)--(-2.687,1.5513)--(-3.687,1.5513)--(-3.687,-1.5513)--cycle;
draw(mat);
draw(rotate(60)*mat);
draw(rotate(120)*mat);
draw(rotate(180)*mat);
draw(rotate(240)*mat);
draw(rotate(300)*mat);
label("$x$",(-2.687,0),E);
label("$1$",(-3.187,1.5513),S);[/asy]$ \textbf{(A)}\ 2\sqrt {5} \minus{} \sqrt {3} \qquad \textbf{(B)}\ 3 \qquad \textbf{(C)}\ \frac {3\sqrt {7} \minus{} \sqrt {3}}{2} \qquad \textbf{(D)}\ 2\sqrt {3} \qquad \textbf{(E)}\ \frac {5 \plus{} 2\sqrt {3}}{2}$
1993 Kurschak Competition, 1
Let $a$ and $b$ be positive integers. Prove that the numbers $an^2+b$ and $a(n+1)^2+b$ are both perfect squares only for finitely many integers $n$.