Found problems: 1148
1969 IMO Shortlist, 14
$(CZS 3)$ Let $a$ and $b$ be two positive real numbers. If $x$ is a real solution of the equation $x^2 + px + q = 0$ with real coefficients $p$ and $q$ such that $|p| \le a, |q| \le b,$ prove that $|x| \le \frac{1}{2}(a +\sqrt{a^2 + 4b})$ Conversely, if $x$ satisfies the above inequality, prove that there exist real numbers $p$ and
$q$ with $|p|\le a, |q|\le b$ such that $x$ is one of the roots of the equation $x^2+px+ q = 0.$
2009 AMC 12/AHSME, 9
Suppose that $ f(x\plus{}3)\equal{}3x^2\plus{}7x\plus{}4$ and $ f(x)\equal{}ax^2\plus{}bx\plus{}c$. What is $ a\plus{}b\plus{}c$?
$ \textbf{(A)}\minus{}\!1 \qquad
\textbf{(B)}\ 0 \qquad
\textbf{(C)}\ 1 \qquad
\textbf{(D)}\ 2 \qquad
\textbf{(E)}\ 3$
2016 SDMO (Middle School), 5
Suppose $a$ and $b$ are integers such that $$x^2+ax+b+1=0$$ has $2$ positive integer solutions. Show that $a^2+b^2$ is not prime.
1999 Putnam, 2
Let $P(x)$ be a polynomial of degree $n$ such that $P(x)=Q(x)P^{\prime\prime}(x)$, where $Q(x)$ is a quadratic polynomial and $P^{\prime\prime}(x)$ is the second derivative of $P(x)$. Show that if $P(x)$ has at least two distinct roots then it must have $n$ distinct roots.
1980 AMC 12/AHSME, 24
For some real number $r$, the polynomial $8x^3-4x^2-42x+45$ is divisible by $(x-r)^2$. Which of the following numbers is closest to $r$?
$\text{(A)} \ 1.22 \qquad \text{(B)} \ 1.32 \qquad \text{(C)} \ 1.42 \qquad \text{(D)} \ 1.52 \qquad \text{(E)} \ 1.62$
1980 AMC 12/AHSME, 8
How many pairs $(a,b)$ of non-zero real numbers satisfy the equation
\[ \frac{1}{a} + \frac{1}{b} = \frac{1}{a+b}? \]
$\text{(A)} \ \text{none} \qquad \text{(B)} \ 1 \qquad \text{(C)} \ 2 \qquad \text{(D)} \ \text{one pair for each} ~b \neq 0$
$\text{(E)} \ \text{two pairs for each} ~b \neq 0$
2011 IMO Shortlist, 2
Let $A_1A_2A_3A_4$ be a non-cyclic quadrilateral. Let $O_1$ and $r_1$ be the circumcentre and the circumradius of the triangle $A_2A_3A_4$. Define $O_2,O_3,O_4$ and $r_2,r_3,r_4$ in a similar way. Prove that
\[\frac{1}{O_1A_1^2-r_1^2}+\frac{1}{O_2A_2^2-r_2^2}+\frac{1}{O_3A_3^2-r_3^2}+\frac{1}{O_4A_4^2-r_4^2}=0.\]
[i]Proposed by Alexey Gladkich, Israel[/i]
2004 Korea - Final Round, 2
Prove that the equation $3y^2 = x^4 + x$ has no positive integer solutions.
2012 USAMTS Problems, 5
An ordered quadruple $(y_1,y_2,y_3,y_4)$ is $\textbf{quadratic}$ if there exist real numbers $a$, $b$, and $c$ such that \[y_n=an^2+bn+c\] for $n=1,2,3,4$.
Prove that if $16$ numbers are placed in a $4\times 4$ grid such that all four rows are quadratic and the first three columns are also quadratic then the fourth column must also be quadratic.
[i](We say that a row is quadratic if its entries, in order, are quadratic. We say the same for a column.)[/i]
[asy]
size(100);
defaultpen(linewidth(0.8));
for(int i=0;i<=4;i=i+1)
draw((i,0)--(i,4));
for(int i=0;i<=4;i=i+1)
draw((0,i)--(4,i));
[/asy]
2008 AMC 10, 9
A quadratic equation $ ax^2\minus{}2ax\plus{}b\equal{}0$ has two real solutions. What is the average of the solutions?
$ \textbf{(A)}\ 1 \qquad
\textbf{(B)}\ 2 \qquad
\textbf{(C)}\ \frac{b}{a} \qquad
\textbf{(D)}\ \frac{2b}{a} \qquad
\textbf{(E)}\ \sqrt{2b\minus{}a}$
1968 Vietnam National Olympiad, 2
$L$ and $M$ are two parallel lines a distance $d$ apart. Given $r$ and $x$, construct a triangle $ABC$, with $A$ on $L$, and $B$ and $C$ on $M$, such that the inradius is $r$, and angle $A = x$. Calculate angles $B$ and $C$ in terms of $d$, $r$ and $x$. If the incircle touches the side $BC$ at $D$, find a relation between $BD$ and $DC$
PEN F Problems, 4
Suppose that $\tan \alpha =\frac{p}{q}$, where $p$ and $q$ are integers and $q \neq 0$. Prove the number $\tan \beta$ for which $\tan 2\beta =\tan 3\alpha$ is rational only when $p^2 +q^2$ is the square of an integer.
2022 AMC 10, 7
For how many values of the constant $k$ will the polynomial $x^{2}+kx+36$ have two distinct integer roots?
$\textbf{(A) }6 \qquad \textbf{(B) }8 \qquad \textbf{(C) }9 \qquad \textbf{(D) }14 \qquad \textbf{(E) }16$
2007 China Team Selection Test, 1
$ u,v,w > 0$,such that $ u \plus{} v \plus{} w \plus{} \sqrt {uvw} \equal{} 4$
prove that $ \sqrt {\frac {uv}{w}} \plus{} \sqrt {\frac {vw}{u}} \plus{} \sqrt {\frac {wu}{v}}\geq u \plus{} v \plus{} w$
2006 Putnam, B1
Show that the curve $x^{3}+3xy+y^{3}=1$ contains only one set of three distinct points, $A,B,$ and $C,$ which are the vertices of an equilateral triangle.
1995 China Team Selection Test, 3
Prove that the interval $\lbrack 0,1 \rbrack$ can be split into black and white intervals for any quadratic polynomial $P(x)$, such that the sum of weights of the black intervals is equal to the sum of weights of the white intervals. (Define the weight of the interval $\lbrack a,b \rbrack$ as $P(b) - P(a)$.)
Does the same result hold with a degree 3 or degree 5 polynomial?
1984 AMC 12/AHSME, 29
Find the largest value for $\frac{y}{x}$ for pairs of real numbers $(x,y)$ which satisfy \[(x-3)^2 + (y-3)^2 = 6.\]
$\textbf{(A) }3 + 2 \sqrt 2\qquad
\textbf{(B) } 2 + \sqrt 3\qquad
\textbf{(C ) }3 \sqrt 3\qquad
\textbf{(D) }6\qquad
\textbf{(E) }6 + 2 \sqrt 3$
PEN H Problems, 29
Find all pairs of integers $(x, y)$ satisfying the equality \[y(x^{2}+36)+x(y^{2}-36)+y^{2}(y-12)=0.\]
1986 AMC 12/AHSME, 13
A parabola $y = ax^{2} + bx + c$ has vertex $(4,2)$. If $(2,0)$ is on the parabola, then $abc$ equals
$ \textbf{(A)}\ -12\qquad\textbf{(B)}\ -6\qquad\textbf{(C)}\ 0\qquad\textbf{(D)}\ 6\qquad\textbf{(E)}\ 12$
2012 Stanford Mathematics Tournament, 2
Find all real values of $x$ such that $(\frac{1}{5}(x^2-10x+26))^{x^2-6x+5}=1$
2007 Stanford Mathematics Tournament, 9
Find $a^2+b^2$ given that $a, b$ are real and satisfy \[a=b+\frac{1}{a+\frac{1}{b+\frac{1}{a+\cdots}}}; b=a-\frac{1}{b+\frac{1}{a-\frac{1}{b+\cdots}}}\]
2001 AIME Problems, 13
In a certain circle, the chord of a $d$-degree arc is 22 centimeters long, and the chord of a $2d$-degree arc is 20 centimeters longer than the chord of a $3d$-degree arc, where $d<120.$ The length of the chord of a $3d$-degree arc is $-m+\sqrt{n}$ centimeters, where $m$ and $n$ are positive integers. Find $m+n.$
2004 USAMTS Problems, 5
Two circles of equal radius can tightly fit inside right triangle $ABC$, which has $AB=13$, $BC=12$, and $CA=5$, in the three positions illustrated below. Determine the radii of the circles in each case.
[asy]
size(400); defaultpen(linewidth(0.7)+fontsize(12)); picture p = new picture; pair s1 = (20,0), s2 = (40,0); real r1 = 1.5, r2 = 10/9, r3 = 26/7; pair A=(12,5), B=(0,0), C=(12,0);
draw(p,A--B--C--cycle); label(p,"$B$",B,SW); label(p,"$A$",A,NE); label(p,"$C$",C,SE);
add(p); add(shift(s1)*p); add(shift(s2)*p);
draw(circle(C+(-r1,r1),r1)); draw(circle(C+(-3*r1,r1),r1));
draw(circle(s1+C+(-r2,r2),r2)); draw(circle(s1+C+(-r2,3*r2),r2));
pair D=s2+156/17*(A-B)/abs(A-B), E=s2+(169/17,0), F=extension(D,E,s2+A,s2+C);
draw(incircle(s2+B,D,E)); draw(incircle(s2+A,D,F));
label("Case (i)",(6,-3)); label("Case (ii)",s1+(6,-3)); label("Case (iii)",s2+(6,-3));[/asy]
2005 National Olympiad First Round, 18
How many integers $0\leq x < 121$ are there such that $x^5+5x^2 + x + 1 \equiv 0 \pmod{121}$?
$
\textbf{(A)}\ 0
\qquad\textbf{(B)}\ 1
\qquad\textbf{(C)}\ 2
\qquad\textbf{(D)}\ 4
\qquad\textbf{(E)}\ 5
$
2012 ELMO Shortlist, 6
Prove that if $a$ and $b$ are positive integers and $ab>1$, then
\[\left\lfloor\frac{(a-b)^2-1}{ab}\right\rfloor=\left\lfloor\frac{(a-b)^2-1}{ab-1}\right\rfloor.\]Here $\lfloor x\rfloor$ denotes the greatest integer not exceeding $x$.
[i]Calvin Deng.[/i]