Found problems: 1148
2002 AMC 12/AHSME, 12
For how many positive integers $n$ is $n^3-8n^2+20n-13$ a prime number?
$\textbf{(A) }1\qquad\textbf{(B) }2\qquad\textbf{(C) }3\qquad\textbf{(D) }4\qquad\textbf{(E) }\text{more than 4}$
2001 Mediterranean Mathematics Olympiad, 2
Find all integers $n$ for which the polynomial $p(x) = x^5 -nx -n -2$ can be represented as a product of two non-constant polynomials with integer coefficients.
2000 AMC 10, 12
Figures $ 0$, $ 1$, $ 2$, and $ 3$ consist of $ 1$, $ 5$, $ 13$, and $ 25$ nonoverlapping squares, respectively. If the pattern were continued, how many nonoverlapping squares would there be in figure $ 100$?
[asy]
unitsize(8);
draw((0,0)--(1,0)--(1,1)--(0,1)--cycle);
draw((9,0)--(10,0)--(10,3)--(9,3)--cycle);
draw((8,1)--(11,1)--(11,2)--(8,2)--cycle);
draw((19,0)--(20,0)--(20,5)--(19,5)--cycle);
draw((18,1)--(21,1)--(21,4)--(18,4)--cycle);
draw((17,2)--(22,2)--(22,3)--(17,3)--cycle);
draw((32,0)--(33,0)--(33,7)--(32,7)--cycle);
draw((29,3)--(36,3)--(36,4)--(29,4)--cycle);
draw((31,1)--(34,1)--(34,6)--(31,6)--cycle);
draw((30,2)--(35,2)--(35,5)--(30,5)--cycle);
label("Figure",(0.5,-1),S);
label("$0$",(0.5,-2.5),S);
label("Figure",(9.5,-1),S);
label("$1$",(9.5,-2.5),S);
label("Figure",(19.5,-1),S);
label("$2$",(19.5,-2.5),S);
label("Figure",(32.5,-1),S);
label("$3$",(32.5,-2.5),S);[/asy]$ \textbf{(A)}\ 10401 \qquad \textbf{(B)}\ 19801 \qquad \textbf{(C)}\ 20201 \qquad \textbf{(D)}\ 39801 \qquad \textbf{(E)}\ 40801$
2006 Romania Team Selection Test, 2
Find all non-negative integers $m,n,p,q$ such that \[ p^mq^n = (p+q)^2 +1 . \]
1992 IMO Longlists, 63
Let $a$ and $b$ be integers. Prove that $\frac{2a^2-1}{b^2+2}$ is not an integer.
2009 Canadian Mathematical Olympiad Qualification Repechage, 5
Determine all positive integers $n$ for which $n(n + 9)$ is a perfect square.
2014 Contests, 1
Let $(x_{n}) \ n\geq 1$ be a sequence of real numbers with $x_{1}=1$ satisfying $2x_{n+1}=3x_{n}+\sqrt{5x_{n}^{2}-4}$
a) Prove that the sequence consists only of natural numbers.
b) Check if there are terms of the sequence divisible by $2011$.
2013 International Zhautykov Olympiad, 1
A quadratic trinomial $p(x)$ with real coefficients is given. Prove that there is a positive integer $n$ such that the equation $p(x) = \frac{1}{n}$ has no rational roots.
2024 JHMT HS, 2
Let $Q$ be a quadratic polynomial with a unique zero. Suppose $Q(12)=Q(16)$ and $Q(20)=24$. Compute $Q(28)$.
2020 MMATHS, I10
Let $f(x)$ be a quadratic polynomial such that $f(f(1)) = f(-f(-1)) = 0$ and $f(1) \neq -f(-1)$. Suppose furthermore that the quadratic $2f(x)$ has coefficients that are nonzero integers. Find $f(0)$.
[i]Proposed by Andrew Wu[/i]
2005 Harvard-MIT Mathematics Tournament, 6
A triangular piece of paper of area $1$ is folded along a line parallel to one of the sides and pressed flat. What is the minimum possible area of the resulting figure?
2001 Putnam, 3
For each integer $m$, consider the polynomial \[ P_m(x)=x^4-(2m+4)x^2+(m-2)^2. \] For what values of $m$ is $P_m(x)$ the product of two non-consant polynomials with integer coefficients?
2009 National Olympiad First Round, 19
$ a$ is a real number. $ x_1$ and $ x_2$ are the distinct roots of $ x^2 \plus{} ax \plus{} 2 \equal{} x$. $ x_3$ and $ x_4$ are the distinct roots of $ (x \minus{} a)^2 \plus{} a(x \minus{} a) \plus{} 2 \equal{} x$. If $ x_3 \minus{} x_1 \equal{} 3(x_4 \minus{} x_2)$, then $ x_4 \minus{} x_2$ will be ?
$\textbf{(A)}\ \frac {a}{2} \qquad\textbf{(B)}\ \frac {a}{3} \qquad\textbf{(C)}\ \frac {2a}{3} \qquad\textbf{(D)}\ \frac {3a}{2} \qquad\textbf{(E)}\ \text{None}$
1985 Dutch Mathematical Olympiad, 1
For some $ p$, the equation $ x^3 \plus{} px^2 \plus{} 3x \minus{} 10 \equal{} 0$ has three real solutions $ a,b,c$ such that $ c \minus{} b \equal{} b \minus{} a > 0$. Determine $ a,b,c,$ and $ p$.
1987 AMC 12/AHSME, 23
If $p$ is a prime and both roots of $x^2+px-444p=0$ are integers, then
$ \textbf{(A)}\ 1<p\le 11 \qquad\textbf{(B)}\ 11<p \le 21 \qquad\textbf{(C)}\ 21< p \le 31 \\ \qquad\textbf{(D)}\ 31< p \le 41 \qquad\textbf{(E)}\ 41< p \le 51 $
2002 Iran MO (3rd Round), 16
For positive $a,b,c$, \[a^{2}+b^{2}+c^{2}+abc=4\] Prove $a+b+c \leq3$
2005 Iran MO (3rd Round), 1
Find all $n,p,q\in \mathbb N$ that:\[2^n+n^2=3^p7^q\]
2020-IMOC, A3
$\definecolor{A}{RGB}{250,120,0}\color{A}\fbox{A3.}$ Assume that $a, b, c$ are positive reals such that $a + b + c = 3$. Prove that $$\definecolor{A}{RGB}{200,0,200}\color{A} \frac{1}{8a^2-18a+11}+\frac{1}{8b^2-18b+11}+\frac{1}{8c^2-18c+11}\le 3.$$
[i]Proposed by [/i][b][color=#419DAB]ltf0501[/color][/b].
[color=#3D9186]#1734[/color]
1998 All-Russian Olympiad, 8
A figure $\Phi$ composed of unit squares has the following property: if the squares of an $m \times n$ rectangle ($m,n$ are fixed) are filled with numbers whose sum is positive, the figure $\Phi$ can be placed within the rectangle (possibly after being rotated) so that the sum of the covered numbers is also positive. Prove that a number of such figures can be put on the $m\times n$ rectangle so that each square is covered by the same number of figures.
1999 Baltic Way, 5
The point $(a,b)$ lies on the circle $x^2+y^2=1$. The tangent to the circle at this point meets the parabola $y=x^2+1$ at exactly one point. Find all such points $(a,b)$.
2012 India IMO Training Camp, 2
Let $a\ge b$ and $c\ge d$ be real numbers. Prove that the equation
\[(x+a)(x+d)+(x+b)(x+c)=0\]
has real roots.
1997 AIME Problems, 12
The function $f$ defined by $\displaystyle f(x)= \frac{ax+b}{cx+d}$. where $a,b,c$ and $d$ are nonzero real numbers, has the properties $f(19)=19, f(97)=97$ and $f(f(x))=x$ for all values except $\displaystyle \frac{-d}{c}$. Find the unique number that is not in the range of $f$.
2012 Indonesia TST, 4
Determine all natural numbers $n$ such that for each natural number $a$ relatively prime with $n$ and $a \le 1 + \left\lfloor \sqrt{n} \right\rfloor$ there exists some integer $x$ with $a \equiv x^2 \mod n$.
Remark: "Natural numbers" is the set of positive integers.
2017 Romanian Master of Mathematics, 4
In the Cartesian plane, let $G_1$ and $G_2$ be the graphs of the quadratic functions $f_1(x) = p_1x^2 + q_1x + r_1$ and $f_2(x) = p_2x^2 + q_2x + r_2$, where $p_1 > 0 > p_2$. The graphs $G_1$ and $G_2$ cross at distinct points $A$ and $B$. The four tangents to $G_1$ and $G_2$ at $A$ and $B$ form a convex quadrilateral which has an inscribed circle. Prove that the graphs $G_1$ and $G_2$ have the same axis of symmetry.
Oliforum Contest IV 2013, 4
Let $p,q$ be integers such that the polynomial $x^2+px+q+1$ has two positive integer roots. Show that $p^2+q^2$ is composite.