This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 248

Croatia MO (HMO) - geometry, 2011.7

Let $K$ and $L$ be the points on the semicircle with diameter $AB$. Denote intersection of $AK$ and $AL$ as $T$ and let $N$ be the point such that $N$ is on segment $AB$ and line $TN$ is perpendicular to $AB$. If $U$ is the intersection of perpendicular bisector of $AB$ an $KL$ and $V$ is a point on $KL$ such that angles $UAV$ and $UBV$ are equal. Prove that $NV$ is perpendicular to $KL$.

2014 Sharygin Geometry Olympiad, 21

Let $ABCD$ be a circumscribed quadrilateral. Its incircle $\omega$ touches the sides $BC$ and $DA$ at points $E$ and $F$ respectively. It is known that lines $AB,FE$ and $CD$ concur. The circumcircles of triangles $AED$ and $BFC$ meet $\omega$ for the second time at points $E_1$ and $F_1$. Prove that $EF$ is parallel to $E_1 F_1$.

2010 Iran Team Selection Test, 5

Circles $W_1,W_2$ intersect at $P,K$. $XY$ is common tangent of two circles which is nearer to $P$ and $X$ is on $W_1$ and $Y$ is on $W_2$. $XP$ intersects $W_2$ for the second time in $C$ and $YP$ intersects $W_1$ in $B$. Let $A$ be intersection point of $BX$ and $CY$. Prove that if $Q$ is the second intersection point of circumcircles of $ABC$ and $AXY$ \[\angle QXA=\angle QKP\]

2008 Bulgaria Team Selection Test, 2

In the triangle $ABC$, $AM$ is median, $M \in BC$, $BB_{1}$ and $CC_{1}$ are altitudes, $C_{1} \in AB$, $B_{1} \in AC$. The line through $A$ which is perpendicular to $AM$ cuts the lines $BB_{1}$ and $CC_{1}$ at points $E$ and $F$, respectively. Let $k$ be the circumcircle of $\triangle EFM$. Suppose also that $k_{1}$ and $k_{2}$ are circles touching both $EF$ and the arc $EF$ of $k$ which does not contain $M$. If $P$ and $Q$ are the points at which $k_{1}$ intersects $k_{2}$, prove that $P$, $Q$, and $M$ are collinear.

2012 Morocco TST, 4

Let $ABC$ be an acute triangle with circumcircle $\Omega$. Let $B_0$ be the midpoint of $AC$ and let $C_0$ be the midpoint of $AB$. Let $D$ be the foot of the altitude from $A$ and let $G$ be the centroid of the triangle $ABC$. Let $\omega$ be a circle through $B_0$ and $C_0$ that is tangent to the circle $\Omega$ at a point $X\not= A$. Prove that the points $D,G$ and $X$ are collinear. [i]Proposed by Ismail Isaev and Mikhail Isaev, Russia[/i]

2006 Romania Team Selection Test, 3

Let $\gamma$ be the incircle in the triangle $A_0A_1A_2$. For all $i\in\{0,1,2\}$ we make the following constructions (all indices are considered modulo 3): $\gamma_i$ is the circle tangent to $\gamma$ which passes through the points $A_{i+1}$ and $A_{i+2}$; $T_i$ is the point of tangency between $\gamma_i$ and $\gamma$; finally, the common tangent in $T_i$ of $\gamma_i$ and $\gamma$ intersects the line $A_{i+1}A_{i+2}$ in the point $P_i$. Prove that a) the points $P_0$, $P_1$ and $P_2$ are collinear; b) the lines $A_0T_0$, $A_1T_1$ and $A_2T_2$ are concurrent.

2006 MOP Homework, 4

Let $ABC$ be a triangle with circumcenter $O$. Let $A_1$ be the midpoint of side $BC$. Ray $AA_1$ meet the circumcircle of triangle $ABC$ again at $A_2$ (other than A). Let $Q_a$ be the foot of the perpendicular from $A_1$ to line $AO$. Point $P_a$ lies on line $Q_aA_1$ such that $P_aA_2 \perp A_2O$. Define points $P_b$ and $P_c$ analogously. Prove that points $P_a$, P_b$, and $P_c$ lie on a line.

2011 IberoAmerican, 3

Let $ABC$ be a triangle and $X,Y,Z$ be the tangency points of its inscribed circle with the sides $BC, CA, AB$, respectively. Suppose that $C_1, C_2, C_3$ are circle with chords $YZ, ZX, XY$, respectively, such that $C_1$ and $C_2$ intersect on the line $CZ$ and that $C_1$ and $C_3$ intersect on the line $BY$. Suppose that $C_1$ intersects the chords $XY$ and $ZX$ at $J$ and $M$, respectively; that $C_2$ intersects the chords $YZ$ and $XY$ at $L$ and $I$, respectively; and that $C_3$ intersects the chords $YZ$ and $ZX$ at $K$ and $N$, respectively. Show that $I, J, K, L, M, N$ lie on the same circle.

2014 ELMO Shortlist, 6

Let $ABCD$ be a cyclic quadrilateral with center $O$. Suppose the circumcircles of triangles $AOB$ and $COD$ meet again at $G$, while the circumcircles of triangles $AOD$ and $BOC$ meet again at $H$. Let $\omega_1$ denote the circle passing through $G$ as well as the feet of the perpendiculars from $G$ to $AB$ and $CD$. Define $\omega_2$ analogously as the circle passing through $H$ and the feet of the perpendiculars from $H$ to $BC$ and $DA$. Show that the midpoint of $GH$ lies on the radical axis of $\omega_1$ and $\omega_2$. [i]Proposed by Yang Liu[/i]

2018 Baltic Way, 15

Two circles in the plane do not intersect and do not lie inside each other. We choose diameters $A_1B_1$ and $A_2B_2$ of these circles such that the segments $A_1A_2$ and $B_1B_2'$ intersect. Let $A$ and $B$ be the midpoints of the segments $A_1A_2$ and $B_1B_2$, and $C$ be the intersection point of these segments. Prove that the orthocenter of the triangle $ABC$ belongs to a fixed line that does not depend on the choice of diameters.

2003 IberoAmerican, 2

In a square $ABCD$, let $P$ and $Q$ be points on the sides $BC$ and $CD$ respectively, different from its endpoints, such that $BP=CQ$. Consider points $X$ and $Y$ such that $X\neq Y$, in the segments $AP$ and $AQ$ respectively. Show that, for every $X$ and $Y$ chosen, there exists a triangle whose sides have lengths $BX$, $XY$ and $DY$.

2012 ELMO Shortlist, 2

In triangle $ABC$, $P$ is a point on altitude $AD$. $Q,R$ are the feet of the perpendiculars from $P$ to $AB,AC$, and $QP,RP$ meet $BC$ at $S$ and $T$ respectively. the circumcircles of $BQS$ and $CRT$ meet $QR$ at $X,Y$. a) Prove $SX,TY, AD$ are concurrent at a point $Z$. b) Prove $Z$ is on $QR$ iff $Z=H$, where $H$ is the orthocenter of $ABC$. [i]Ray Li.[/i]

2010 Romania Team Selection Test, 3

Let $\gamma_1$ and $\gamma_2$ be two circles tangent at point $T$, and let $\ell_1$ and $\ell_2$ be two lines through $T$. The lines $\ell_1$ and $\ell_2$ meet again $\gamma_1$ at points $A$ and $B$, respectively, and $\gamma_2$ at points $A_1$ and $B_1$, respectively. Let further $X$ be a point in the complement of $\gamma_1 \cup \gamma_2 \cup \ell_1 \cup \ell_2$. The circles $ATX$ and $BTX$ meet again $\gamma_2$ at points $A_2$ and $B_2$, respectively. Prove that the lines $TX$, $A_1B_2$ and $A_2B_1$ are concurrent. [i]***[/i]

2016 Taiwan TST Round 2, 1

Let $O$ be the circumcenter of triangle $ABC$, and $\omega$ be the circumcircle of triangle $BOC$. Line $AO$ intersects with circle $\omega$ again at the point $G$. Let $M$ be the midpoint of side $BC$, and the perpendicular bisector of $BC$ meets circle $\omega$ at the points $O$ and $N$. Prove that the midpoint of the segment $AN$ lies on the radical axis of the circumcircle of triangle $OMG$, and the circle whose diameter is $AO$.

2013 NIMO Problems, 4

Let $a,b,c$ be the answers to problems $4$, $5$, and $6$, respectively. In $\triangle ABC$, the measures of $\angle A$, $\angle B$, and $\angle C$ are $a$, $b$, $c$ in degrees, respectively. Let $D$ and $E$ be points on segments $AB$ and $AC$ with $\frac{AD}{BD} = \frac{AE}{CE} = 2013$. A point $P$ is selected in the interior of $\triangle ADE$, with barycentric coordinates $(x,y,z)$ with respect to $\triangle ABC$ (here $x+y+z=1$). Lines $BP$ and $CP$ meet line $DE$ at $B_1$ and $C_1$, respectively. Suppose that the radical axis of the circumcircles of $\triangle PDC_1$ and $\triangle PEB_1$ pass through point $A$. Find $100x$. [i]Proposed by Evan Chen[/i]

2005 Tuymaada Olympiad, 7

Let $I$ be the incentre of triangle $ABC$. A circle containing the points $B$ and $C$ meets the segments $BI$ and $CI$ at points $P$ and $Q$ respectively. It is known that $BP\cdot CQ=PI\cdot QI$. Prove that the circumcircle of the triangle $PQI$ is tangent to the circumcircle of $ABC$. [i]Proposed by S. Berlov[/i]

2007 Junior Balkan Team Selection Tests - Romania, 3

Let $ABC$ be a right triangle with $A = 90^{\circ}$ and $D \in (AC)$. Denote by $E$ the reflection of $A$ in the line $BD$ and $F$ the intersection point of $CE$ with the perpendicular in $D$ to $BC$. Prove that $AF, DE$ and $BC$ are concurrent.

2011 Croatia Team Selection Test, 3

Let $K$ and $L$ be the points on the semicircle with diameter $AB$. Denote intersection of $AK$ and $AL$ as $T$ and let $N$ be the point such that $N$ is on segment $AB$ and line $TN$ is perpendicular to $AB$. If $U$ is the intersection of perpendicular bisector of $AB$ an $KL$ and $V$ is a point on $KL$ such that angles $UAV$ and $UBV$ are equal. Prove that $NV$ is perpendicular to $KL$.

2006 Vietnam Team Selection Test, 2

Given a non-isoceles triangle $ABC$ inscribes a circle $(O,R)$ (center $O$, radius $R$). Consider a varying line $l$ such that $l\perp OA$ and $l$ always intersects the rays $AB,AC$ and these intersectional points are called $M,N$. Suppose that the lines $BN$ and $CM$ intersect, and if the intersectional point is called $K$ then the lines $AK$ and $BC$ intersect. $1$, Assume that $P$ is the intersectional point of $AK$ and $BC$. Show that the circumcircle of the triangle $MNP$ is always through a fixed point. $2$, Assume that $H$ is the orthocentre of the triangle $AMN$. Denote $BC=a$, and $d$ is the distance between $A$ and the line $HK$. Prove that $d\leq\sqrt{4R^2-a^2}$ and the equality occurs iff the line $l$ is through the intersectional point of two lines $AO$ and $BC$.

2007 Bulgaria Team Selection Test, 1

In isosceles triangle $ABC(AC=BC)$ the point $M$ is in the segment $AB$ such that $AM=2MB,$ $F$ is the midpoint of $BC$ and $H$ is the orthogonal projection of $M$ in $AF.$ Prove that $\angle BHF=\angle ABC.$

2010 Vietnam Team Selection Test, 2

Let $ABC$ be a triangle with $ \widehat{BAC}\neq 90^\circ $. Let $M$ be the midpoint of $BC$. We choose a variable point $D$ on $AM$. Let $(O_1)$ and $(O_2)$ be two circle pass through $ D$ and tangent to $BC$ at $B$ and $C$. The line $BA$ and $CA$ intersect $(O_1),(O_2)$ at $ P,Q$ respectively. [b]a)[/b] Prove that tangent line at $P$ on $(O_1)$ and $Q$ on $(O_2)$ must intersect at $S$. [b]b)[/b] Prove that $S$ lies on a fix line.

2011 International Zhautykov Olympiad, 3

Diagonals of a cyclic quadrilateral $ABCD$ intersect at point $K.$ The midpoints of diagonals $AC$ and $BD$ are $M$ and $N,$ respectively. The circumscribed circles $ADM$ and $BCM$ intersect at points $M$ and $L.$ Prove that the points $K ,L ,M,$ and $ N$ lie on a circle. (all points are supposed to be different.)

2014 Peru Iberoamerican Team Selection Test, P5

The incircle $\odot (I)$ of $\triangle ABC$ touch $AC$ and $AB$ at $E$ and $F$ respectively. Let $H$ be the foot of the altitude from $A$, if $R \equiv IC \cap AH, \ \ Q \equiv BI \cap AH$ prove that the midpoint of $AH$ lies on the radical axis between $\odot (REC)$ and $\odot (QFB)$ I hope that this is not repost :)

2008 Kazakhstan National Olympiad, 2

Suppose that $ B_1$ is the midpoint of the arc $ AC$, containing $ B$, in the circumcircle of $ \triangle ABC$, and let $ I_b$ be the $ B$-excircle's center. Assume that the external angle bisector of $ \angle ABC$ intersects $ AC$ at $ B_2$. Prove that $ B_2I$ is perpendicular to $ B_1I_B$, where $ I$ is the incenter of $ \triangle ABC$.

2010 China Team Selection Test, 1

Let $\omega$ be a semicircle and $AB$ its diameter. $\omega_1$ and $\omega_2$ are two different circles, both tangent to $\omega$ and to $AB$, and $\omega_1$ is also tangent to $\omega_2$. Let $P,Q$ be the tangent points of $\omega_1$ and $\omega_2$ to $AB$ respectively, and $P$ is between $A$ and $Q$. Let $C$ be the tangent point of $\omega_1$ and $\omega$. Find $\tan\angle ACQ$.