This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 248

2007 Bulgaria Team Selection Test, 1

In isosceles triangle $ABC(AC=BC)$ the point $M$ is in the segment $AB$ such that $AM=2MB,$ $F$ is the midpoint of $BC$ and $H$ is the orthogonal projection of $M$ in $AF.$ Prove that $\angle BHF=\angle ABC.$

1969 IMO Longlists, 3

$(BEL 3)$ Construct the circle that is tangent to three given circles.

2011 Rioplatense Mathematical Olympiad, Level 3, 2

Let $ABC$ an acute triangle and $H$ its orthocenter. Let $E$ and $F$ be the intersection of lines $BH$ and $CH$ with $AC$ and $AB$ respectively, and let $D$ be the intersection of lines $EF$ and $BC$. Let $\Gamma_1$ be the circumcircle of $AEF$, and $\Gamma_2$ the circumcircle of $BHC$. The line $AD$ intersects $\Gamma_1$ at point $I \neq A$. Let $J$ be the feet of the internal bisector of $\angle{BHC}$ and $M$ the midpoint of the arc $\stackrel{\frown}{BC}$ from $\Gamma_2$ that contains the point $H$. The line $MJ$ intersects $\Gamma_2$ at point $N \neq M$. Show that the triangles $EIF$ and $CNB$ are similar.

2006 All-Russian Olympiad, 6

Consider a tetrahedron $SABC$. The incircle of the triangle $ABC$ has the center $I$ and touches its sides $BC$, $CA$, $AB$ at the points $E$, $F$, $D$, respectively. Let $A^{\prime}$, $B^{\prime}$, $C^{\prime}$ be the points on the segments $SA$, $SB$, $SC$ such that $AA^{\prime}=AD$, $BB^{\prime}=BE$, $CC^{\prime}=CF$, and let $S^{\prime}$ be the point diametrically opposite to the point $S$ on the circumsphere of the tetrahedron $SABC$. Assume that the line $SI$ is an altitude of the tetrahedron $SABC$. Show that $S^{\prime}A^{\prime}=S^{\prime}B^{\prime}=S^{\prime}C^{\prime}$.

2007 Bulgaria Team Selection Test, 1

In isosceles triangle $ABC(AC=BC)$ the point $M$ is in the segment $AB$ such that $AM=2MB,$ $F$ is the midpoint of $BC$ and $H$ is the orthogonal projection of $M$ in $AF.$ Prove that $\angle BHF=\angle ABC.$

2012 ELMO Shortlist, 2

In triangle $ABC$, $P$ is a point on altitude $AD$. $Q,R$ are the feet of the perpendiculars from $P$ to $AB,AC$, and $QP,RP$ meet $BC$ at $S$ and $T$ respectively. the circumcircles of $BQS$ and $CRT$ meet $QR$ at $X,Y$. a) Prove $SX,TY, AD$ are concurrent at a point $Z$. b) Prove $Z$ is on $QR$ iff $Z=H$, where $H$ is the orthocenter of $ABC$. [i]Ray Li.[/i]

2008 Baltic Way, 18

Let $ AB$ be a diameter of a circle $ S$, and let $ L$ be the tangent at $ A$. Furthermore, let $ c$ be a fixed, positive real, and consider all pairs of points $ X$ and $ Y$ lying on $ L$, on opposite sides of $ A$, such that $ |AX|\cdot |AY| \equal{} c$. The lines $ BX$ and $ BY$ intersect $ S$ at points $ P$ and $ Q$, respectively. Show that all the lines $ PQ$ pass through a common point.

2001 Tuymaada Olympiad, 3

$ABCD$ is a convex quadrilateral; half-lines $DA$ and $CB$ meet at point $Q$; half-lines $BA$ and $CD$ meet at point $P$. It is known that $\angle AQB=\angle APD$. The bisector of angle $\angle AQB$ meets the sides $AB$ and $CD$ of the quadrilateral at points $X$ and $Y$, respectively; the bisector of angle $\angle APD$ meets the sides $AD$ and $BC$ at points $Z$ and $T$, respectively. The circumcircles of triangles $ZQT$ and $XPY$ meet at point $K$ inside the quadrilateral. Prove that $K$ lies on the diagonal $AC$. [i]Proposed by S. Berlov[/i]

2014 Vietnam National Olympiad, 1

Given a circle $(O)$ and two fixed points $B,C$ on $(O),$ and an arbitrary point $A$ on $(O)$ such that the triangle $ABC$ is acute. $M$ lies on ray $AB,$ $N$ lies on ray $AC$ such that $MA=MC$ and $NA=NB.$ Let $P$ be the intersection of $(AMN)$ and $(ABC),$ $P\ne A.$ $MN$ intersects $BC$ at $Q.$ a) Prove that $A,P,Q$ are collinear. b) $D$ is the midpoint of $BC.$ Let $K$ be the intersection of $(M,MA)$ and $(N,NA),$ $K\ne A.$ $d$ is the line passing through $A$ and perpendicular to $AK.$ $E$ is the intersection of $d$ and $BC.$ $(ADE)$ intersects $(O)$ at $F,$ $F\ne A.$ Prove that $AF$ passes through a fixed point.

2004 Korea - Final Round, 1

An isosceles triangle with $AB=AC$ has an inscribed circle $O$, which touches its sides $BC,CA,AB$ at $K,L,M$ respectively. The lines $OL$ and $KM$ intersect at $N$; the lines $BN$ and $CA$ intersect at $Q$. Let $P$ be the foot of the perpendicular from $A$ on $BQ$. Suppose that $BP=AP+2\cdot PQ$. Then, what values can the ratio $\frac{AB}{BC}$ assume?

2011 USA Team Selection Test, 7

Let $ABC$ be an acute scalene triangle inscribed in circle $\Omega$. Circle $\omega$, centered at $O$, passes through $B$ and $C$ and intersects sides $AB$ and $AC$ at $E$ and $D$, respectively. Point $P$ lies on major arc $BAC$ of $\Omega$. Prove that lines $BD, CE, OP$ are concurrent if and only if triangles $PBD$ and $PCE$ have the same incenter.

2010 Indonesia TST, 3

Let $ABCD$ be a convex quadrilateral with $AB$ is not parallel to $CD$. Circle $\omega_1$ with center $O_1$ passes through $A$ and $B$, and touches segment $CD$ at $P$. Circle $\omega_2$ with center $O_2$ passes through $C$ and $D$, and touches segment $AB$ at $Q$. Let $E$ and $F$ be the intersection of circles $\omega_1$ and $\omega_2$. Prove that $EF$ bisects segment $PQ$ if and only if $BC$ is parallel to $AD$.

2006 Romania Team Selection Test, 3

Let $\gamma$ be the incircle in the triangle $A_0A_1A_2$. For all $i\in\{0,1,2\}$ we make the following constructions (all indices are considered modulo 3): $\gamma_i$ is the circle tangent to $\gamma$ which passes through the points $A_{i+1}$ and $A_{i+2}$; $T_i$ is the point of tangency between $\gamma_i$ and $\gamma$; finally, the common tangent in $T_i$ of $\gamma_i$ and $\gamma$ intersects the line $A_{i+1}A_{i+2}$ in the point $P_i$. Prove that a) the points $P_0$, $P_1$ and $P_2$ are collinear; b) the lines $A_0T_0$, $A_1T_1$ and $A_2T_2$ are concurrent.

2014 ELMO Shortlist, 6

Let $ABCD$ be a cyclic quadrilateral with center $O$. Suppose the circumcircles of triangles $AOB$ and $COD$ meet again at $G$, while the circumcircles of triangles $AOD$ and $BOC$ meet again at $H$. Let $\omega_1$ denote the circle passing through $G$ as well as the feet of the perpendiculars from $G$ to $AB$ and $CD$. Define $\omega_2$ analogously as the circle passing through $H$ and the feet of the perpendiculars from $H$ to $BC$ and $DA$. Show that the midpoint of $GH$ lies on the radical axis of $\omega_1$ and $\omega_2$. [i]Proposed by Yang Liu[/i]

2007 QEDMO 4th, 12

Let $ABC$ be a triangle, and let $D$, $E$, $F$ be the points of contact of its incircle $\omega$ with its sides $BC$, $CA$, $AB$, respectively. Let $K$ be the point of intersection of the line $AD$ with the incircle $\omega$ different from $D$, and let $M$ be the point of intersection of the line $EF$ with the line perpendicular to $AD$ passing through $K$. Prove that $AM$ is parallel to $BC$.

2012 ELMO Shortlist, 6

In $\triangle ABC$, $H$ is the orthocenter, and $AD,BE$ are arbitrary cevians. Let $\omega_1, \omega_2$ denote the circles with diameters $AD$ and $BE$, respectively. $HD,HE$ meet $\omega_1,\omega_2$ again at $F,G$. $DE$ meets $\omega_1,\omega_2$ again at $P_1,P_2$ respectively. $FG$ meets $\omega_1,\omega_2$ again $Q_1,Q_2$ respectively. $P_1H,Q_1H$ meet $\omega_1$ at $R_1,S_1$ respectively. $P_2H,Q_2H$ meet $\omega_2$ at $R_2,S_2$ respectively. Let $P_1Q_1\cap P_2Q_2 = X$, and $R_1S_1\cap R_2S_2=Y$. Prove that $X,Y,H$ are collinear. [i]Ray Li.[/i]

2010 Vietnam Team Selection Test, 2

Let $ABC$ be a triangle with $ \widehat{BAC}\neq 90^\circ $. Let $M$ be the midpoint of $BC$. We choose a variable point $D$ on $AM$. Let $(O_1)$ and $(O_2)$ be two circle pass through $ D$ and tangent to $BC$ at $B$ and $C$. The line $BA$ and $CA$ intersect $(O_1),(O_2)$ at $ P,Q$ respectively. [b]a)[/b] Prove that tangent line at $P$ on $(O_1)$ and $Q$ on $(O_2)$ must intersect at $S$. [b]b)[/b] Prove that $S$ lies on a fix line.

2011 IberoAmerican, 3

Let $ABC$ be a triangle and $X,Y,Z$ be the tangency points of its inscribed circle with the sides $BC, CA, AB$, respectively. Suppose that $C_1, C_2, C_3$ are circle with chords $YZ, ZX, XY$, respectively, such that $C_1$ and $C_2$ intersect on the line $CZ$ and that $C_1$ and $C_3$ intersect on the line $BY$. Suppose that $C_1$ intersects the chords $XY$ and $ZX$ at $J$ and $M$, respectively; that $C_2$ intersects the chords $YZ$ and $XY$ at $L$ and $I$, respectively; and that $C_3$ intersects the chords $YZ$ and $ZX$ at $K$ and $N$, respectively. Show that $I, J, K, L, M, N$ lie on the same circle.

2018 Baltic Way, 15

Two circles in the plane do not intersect and do not lie inside each other. We choose diameters $A_1B_1$ and $A_2B_2$ of these circles such that the segments $A_1A_2$ and $B_1B_2'$ intersect. Let $A$ and $B$ be the midpoints of the segments $A_1A_2$ and $B_1B_2$, and $C$ be the intersection point of these segments. Prove that the orthocenter of the triangle $ABC$ belongs to a fixed line that does not depend on the choice of diameters.

2011 International Zhautykov Olympiad, 3

Diagonals of a cyclic quadrilateral $ABCD$ intersect at point $K.$ The midpoints of diagonals $AC$ and $BD$ are $M$ and $N,$ respectively. The circumscribed circles $ADM$ and $BCM$ intersect at points $M$ and $L.$ Prove that the points $K ,L ,M,$ and $ N$ lie on a circle. (all points are supposed to be different.)

2025 Ukraine National Mathematical Olympiad, 11.2

The lines \(AB\) and \(CD\), containing the lateral sides of the trapezoid \(ABCD\), intersect at point \(Q\). Inside the trapezoid \(ABCD\), a point \(P\) is chosen such that \(\angle APB = \angle CPD\). Prove that the circumcircles of triangles \(BPD\) and \(APC\) intersect again on the line \(PQ\). [i]Proposed by Mykhailo Shtandenko[/i]

2011 Puerto Rico Team Selection Test, 4

Let $P$ be a point inside the triangle $ABC$, such that the angles $\angle CBP$ and $\angle PAC$ are equal. Denote the intersection of the line $AP$ and the segment $BC$ by $D$, and the intersection of the line $BP$ with the segment $AC$ by $E$. The circumcircles of the triangles $ADC$ and $BEC$ meet at $C$ and $F$. Show that the line $CP$ bisects the angle $DFE$. Please remember to hide your solution. (by using the hide tags of course.. I don't literally mean that you should hide it :ninja: )

Russian TST 2020, P2

Octagon $A_1A_2A_3A_4A_5A_6A_7A_8$ is inscribed in a circle $\Omega$ with center $O$. It is known that $A_1A_2\|A_5A_6$, $A_3A_4\|A_7A_8$ and $A_2A_3\|A_5A_8$. The circle $\omega_{12}$ passes through $A_1$, $A_2$ and touches $A_1A_6$; circle $\omega_{34}$ passes through $A_3$, $A_4$ and touches $A_3A_8$; the circle $\omega_{56}$ passes through $A_5$, $A_6$ and touches $A_5A_2$; the circle $\omega_{78}$ passes through $A_7$, $A_8$ and touches $A_7A_4$. The common external tangent to $\omega_{12}$ and $\omega_{34}$ cross the line passing through ${A_1A_6}\cap{A_3A_8}$ and ${A_5A_2}\cap{A_7A_4}$ at the point $X$. Prove that one of the common tangents to $\omega_{56}$ and $\omega_{78}$ passes through $X$.

2011 Korea - Final Round, 2

$ABC$ is an acute triangle. $P$(different from $B,C$) is a point on side $BC$. $H$ is an orthocenter, and $D$ is a foot of perpendicular from $H$ to $AP$. The circumcircle of the triangle $ABD$ and $ACD$ is $O _1$ and $O_2$, respectively. A line $l$ parallel to $BC$ passes $D$ and meet $O_1$ and $O_2$ again at $X$ and $Y$, respectively. $l$ meets $AB$ at $E$, and $AC$ at $F$. Two lines $XB$ and $YC$ intersect at $Z$. Prove that $ZE=ZF$ is a necessary and sufficient condition for $BP=CP$.

2015 Iran Team Selection Test, 1

Point $A$ is outside of a given circle $\omega$. Let the tangents from $A$ to $\omega$ meet $\omega$ at $S, T$ points $X, Y$ are midpoints of $AT, AS$ let the tangent from $X$ to $\omega$ meet $\omega$ at $R\neq T$. points $P, Q$ are midpoints of $XT, XR$ let $XY\cap PQ=K, SX\cap TK=L$ prove that quadrilateral $KRLQ$ is cyclic.