This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1679

2012 AMC 10, 21

Four distinct points are arranged in a plane so that the segments connecting them has lengths $a,a,a,a,2a,$ and $b$. What is the ratio of $b$ to $a$? $ \textbf{(A)}\ \sqrt{3}\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ \sqrt{5}\qquad\textbf{(D)}\ 3\qquad\textbf{(E)}\ \pi $

2009 AMC 10, 23

Convex quadrilateral $ ABCD$ has $ AB\equal{}9$ and $ CD\equal{}12$. Diagonals $ AC$ and $ BD$ intersect at $ E$, $ AC\equal{}14$, and $ \triangle AED$ and $ \triangle BEC$ have equal areas. What is $ AE$? $ \textbf{(A)}\ \frac{9}{2}\qquad \textbf{(B)}\ \frac{50}{11}\qquad \textbf{(C)}\ \frac{21}{4}\qquad \textbf{(D)}\ \frac{17}{3}\qquad \textbf{(E)}\ 6$

1998 Federal Competition For Advanced Students, Part 2, 3

In a parallelogram $ABCD$ with the side ratio $AB : BC = 2 : \sqrt 3$ the normal through $D$ to $AC$ and the normal through $C$ to $AB$ intersects in the point $E$ on the line $AB$. What is the relationship between the lengths of the diagonals $AC$ and $BD$?

2011 JBMO Shortlist, 6

Let $n>3$ be a positive integer. Equilateral triangle ABC is divided into $n^2$ smaller congruent equilateral triangles (with sides parallel to its sides). Let $m$ be the number of rhombuses that contain two small equilateral triangles and $d$ the number of rhombuses that contain eight small equilateral triangles. Find the difference $m-d$ in terms of $n$.

2004 Iran Team Selection Test, 3

Suppose that $ ABCD$ is a convex quadrilateral. Let $ F \equal{} AB\cap CD$, $ E \equal{} AD\cap BC$ and $ T \equal{} AC\cap BD$. Suppose that $ A,B,T,E$ lie on a circle which intersects with $ EF$ at $ P$. Prove that if $ M$ is midpoint of $ AB$, then $ \angle APM \equal{} \angle BPT$.

Kyiv City MO Seniors Round2 2010+ geometry, 2022.10.3

Tags: geometry , ratio
Let $AH_A, BH_B, CH_C$ be the altitudes of triangle $ABC$. Prove that if $\frac{H_BC}{AC} = \frac{H_CA}{AB}$, then the line symmetric to $BC$ with respect to line $H_BH_C$ is tangent to the circumscribed circle of triangle $H_BH_CA$. [i](Proposed by Mykhailo Bondarenko)[/i]

2010 AIME Problems, 6

Let $ P(x)$ be a quadratic polynomial with real coefficients satisfying \[x^2 \minus{} 2x \plus{} 2 \le P(x) \le 2x^2 \minus{} 4x \plus{} 3\] for all real numbers $ x$, and suppose $ P(11) \equal{} 181$. Find $ P(16)$.

1969 Canada National Olympiad, 4

Let $ABC$ be an equilateral triangle, and $P$ be an arbitrary point within the triangle. Perpendiculars $PD,PE,PF$ are drawn to the three sides of the triangle. Show that, no matter where $P$ is chosen, \[ \frac{PD+PE+PF}{AB+BC+CA}=\frac{1}{2\sqrt{3}}. \]

2009 India IMO Training Camp, 1

Let $ ABC$ be a triangle with $ \angle A = 60^{\circ}$.Prove that if $ T$ is point of contact of Incircle And Nine-Point Circle, Then $ AT = r$, $ r$ being inradius.

Estonia Open Junior - geometry, 2012.1.3

A rectangle $ABEF$ is drawn on the leg $AB$ of a right triangle $ABC$, whose apex $F$ is on the leg $AC$. Let $X$ be the intersection of the diagonal of the rectangle $AE$ and the hypotenuse $BC$ of the triangle. In what ratio does point $X$ divide the hypotenuse $BC$ if it is known that $| AC | = 3 | AB |$ and $| AF | = 2 | AB |$?

2004 National Olympiad First Round, 1

If the circumradius of a regular $n$-gon is $1$ and the ratio of its perimeter over its area is $\dfrac{4\sqrt 3}{3}$, what is $n$? $ \textbf{(A)}\ 3 \qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\ 5 \qquad\textbf{(D)}\ 6 \qquad\textbf{(E)}\ 8 $

1988 IMO Shortlist, 13

In a right-angled triangle $ ABC$ let $ AD$ be the altitude drawn to the hypotenuse and let the straight line joining the incentres of the triangles $ ABD, ACD$ intersect the sides $ AB, AC$ at the points $ K,L$ respectively. If $ E$ and $ E_1$ dnote the areas of triangles $ ABC$ and $ AKL$ respectively, show that \[ \frac {E}{E_1} \geq 2. \]

2013 USAJMO, 5

Quadrilateral $XABY$ is inscribed in the semicircle $\omega$ with diameter $XY$. Segments $AY$ and $BX$ meet at $P$. Point $Z$ is the foot of the perpendicular from $P$ to line $XY$. Point $C$ lies on $\omega$ such that line $XC$ is perpendicular to line $AZ$. Let $Q$ be the intersection of segments $AY$ and $XC$. Prove that \[\dfrac{BY}{XP}+\dfrac{CY}{XQ}=\dfrac{AY}{AX}.\]

1999 USAMTS Problems, 3

Tags: probability , ratio
The figure on the right shows the map of Squareville, where each city block is of the same length. Two friends, Alexandra and Brianna, live at the corners marked by $A$ and $B$, respectively. They start walking toward each other's house, leaving at the same time, walking with the same speed, and independently choosing a path to the other's house with uniform distribution out of all possible minimum-distance paths [that is, all minimum-distance paths are equally likely]. What is the probability they will meet? [asy] size(200); defaultpen(linewidth(0.8)); for(int i=0;i<=2;++i) { for(int j=0;j<=4;++j) { draw((i,j)--(i+1,j)--(i+1,j+1)--(i,j+1)--cycle); } } for(int i=3;i<=4;++i) { for(int j=3;j<=6;++j) { draw((i,j)--(i+1,j)--(i+1,j+1)--(i,j+1)--cycle); } } label("$A$",origin,SW); label("$B$",(5,7),SE); [/asy]

1995 AMC 8, 11

Jane can walk any distance in half the time it takes Hector to walk the same distance. They set off in opposite directions around the outside of the 18-block area as shown. When they meet for the first time, they will be closest to [asy] for(int i = -2; i <= 2; ++i) { draw((i,0)--(i,3),dashed); } draw((-3,1)--(3,1),dashed); draw((-3,2)--(3,2),dashed); draw((-3,0)--(-3,3)--(3,3)--(3,0)--cycle); dot((-3,0)); label("$A$",(-3,0),SW); dot((-3,3)); label("$B$",(-3,3),NW); dot((0,3)); label("$C$",(0,3),N); dot((3,3)); label("$D$",(3,3),NE); dot((3,0)); label("$E$",(3,0),SE); dot((0,0)); label("start",(0,0),S); label("$\longrightarrow$",(0,-0.75),E); label("$\longleftarrow$",(0,-0.75),W); label("$\textbf{Jane}$",(0,-1.25),W); label("$\textbf{Hector}$",(0,-1.25),E); [/asy] $\text{(A)}\ A \qquad \text{(B)}\ B \qquad \text{(C)}\ C \qquad \text{(D)}\ D \qquad \text{(E)}\ E$

2003 Iran MO (3rd Round), 6

let the incircle of a triangle ABC touch BC,AC,AB at A1,B1,C1 respectively. M and N are the midpoints of AB1 and AC1 respectively. MN meets A1C1 at T . draw two tangents TP and TQ through T to incircle. PQ meets MN at L and B1C1 meets PQ at K . assume I is the center of the incircle . prove IK is parallel to AL

1990 AIME Problems, 3

Let $ P_1$ be a regular $ r$-gon and $ P_2$ be a regular $ s$-gon $ (r\geq s\geq 3)$ such that each interior angle of $ P_1$ is $ \frac {59}{58}$ as large as each interior angle of $ P_2$. What's the largest possible value of $ s$?

1996 APMO, 1

Let $ABCD$ be a quadrilateral $AB = BC = CD = DA$. Let $MN$ and $PQ$ be two segments perpendicular to the diagonal $BD$ and such that the distance between them is $d > \frac{BD}{2}$, with $M \in AD$, $N \in DC$, $P \in AB$, and $Q \in BC$. Show that the perimeter of hexagon $AMNCQP$ does not depend on the position of $MN$ and $PQ$ so long as the distance between them remains constant.

1959 AMC 12/AHSME, 12

By adding the same constant to $20,50,100$ a geometric progression results. The common ratio is: $ \textbf{(A)}\ \frac53 \qquad\textbf{(B)}\ \frac43\qquad\textbf{(C)}\ \frac32\qquad\textbf{(D)}\ \frac12\qquad\textbf{(E)}\ \frac13 $

1998 AMC 12/AHSME, 28

In triangle $ ABC$, angle $ C$ is a right angle and $ CB > CA$. Point $ D$ is located on $ \overline{BC}$ so that angle $ CAD$ is twice angle $ DAB$. If $ AC/AD \equal{} 2/3$, then $ CD/BD \equal{} m/n$, where $ m$ and $ n$ are relatively prime positive integers. Find $ m \plus{} n$. $ \textbf{(A)}\ 10\qquad \textbf{(B)}\ 14\qquad \textbf{(C)}\ 18\qquad \textbf{(D)}\ 22\qquad \textbf{(E)}\ 26$

2024 ELMO Shortlist, N3

Given a positive integer $k$, find all polynomials $P$ of degree $k$ with integer coefficients such that for all positive integers $n$ where all of $P(n)$, $P(2024n)$, $P(2024^2n)$ are nonzero, we have $$\frac{\gcd(P(2024n), P(2024^2n))}{\gcd(P(n), P(2024n))}=2024^k.$$ [i]Allen Wang[/i]

2014 Sharygin Geometry Olympiad, 5

Tags: geometry , ratio
In an acute-angled triangle $ABC$, $AM$ is a median, $AL$ is a bisector and $AH$ is an altitude ($H$ lies between $L$ and $B$). It is known that $ML=LH=HB$. Find the ratios of the sidelengths of $ABC$.

2008 Harvard-MIT Mathematics Tournament, 9

Let $ ABC$ be a triangle, and $ I$ its incenter. Let the incircle of $ ABC$ touch side $ BC$ at $ D$, and let lines $ BI$ and $ CI$ meet the circle with diameter $ AI$ at points $ P$ and $ Q$, respectively. Given $ BI \equal{} 6, CI \equal{} 5, DI \equal{} 3$, determine the value of $ \left( DP / DQ \right)^2$.

2009 Princeton University Math Competition, 1

If $\phi$ is the Golden Ratio, we know that $\frac1\phi = \phi - 1$. Define a new positive real number, called $\phi_d$, where $\frac1{\phi_d} = \phi_d - d$ (so $\phi = \phi_1$). Given that $\phi_{2009} = \frac{a + \sqrt{b}}{c}$, $a, b, c$ positive integers, and the greatest common divisor of $a$ and $c$ is 1, find $a + b + c$.

2012 Korea National Olympiad, 2

Let $ w $ be the incircle of triangle $ ABC $. Segments $ BC, CA $ meet with $ w $ at points $ D, E$. A line passing through $ B $ and parallel to $ DE $ meets $ w $ at $ F $ and $ G $. ($ F $ is nearer to $ B $ than $ G $.) Line $ CG $ meets $ w $ at $ H ( \ne G ) $. A line passing through $ G $ and parallel to $ EH $ meets with line $ AC $ at $ I $. Line $ IF $ meets with circle $ w $ at $ J (\ne F ) $. Lines $ CJ $ and $ EG $ meets at $ K $. Let $ l $ be the line passing through $ K $ and parallel to $ JD $. Prove that $ l, IF, ED $ meet at one point.