Found problems: 1679
2005 AMC 10, 14
Equilateral $ \triangle ABC$ has side length $ 2$, $ M$ is the midpoint of $ \overline{AC}$, and $ C$ is the midpoint of $ \overline{BD}$. What is the area of $ \triangle CDM$?
[asy]size(200);defaultpen(linewidth(.8pt)+fontsize(8pt));
pair B = (0,0);
pair A = 2*dir(60);
pair C = (2,0);
pair D = (4,0);
pair M = midpoint(A--C);
label("$A$",A,NW);label("$B$",B,SW);label("$C$",C, SE);label("$M$",M,NE);label("$D$",D,SE);
draw(A--B--C--cycle);
draw(C--D--M--cycle);[/asy]$ \textbf{(A)}\ \frac {\sqrt {2}}{2}\qquad \textbf{(B)}\ \frac {3}{4}\qquad \textbf{(C)}\ \frac {\sqrt {3}}{2}\qquad \textbf{(D)}\ 1\qquad \textbf{(E)}\ \sqrt {2}$
1999 Poland - Second Round, 3
Let $ABCD$ be a cyclic quadrilateral and let $E$ and $F$ be the points on the sides $AB$ and $CD$ respectively such that $AE : EB = CF : FD$. Point $P$ on the segment EF satsfies $EP : PF = AB : CD$. Prove that the ratio of the areas of $\vartriangle APD$ and $\vartriangle BPC$ does not depend on the choice of $E$ and $F$.
2020-21 KVS IOQM India, 18
Let $D,E,F$ be points on the sides $BC,CA,AB$ of a triangle $ABC$, respectively. Suppose $AD, BE,CF$ are concurrent at $P$. If $PF/PC =2/3, PE/PB = 2/7$ and $PD/PA = m/n$, where $m, n$ are positive integers with $gcd(m, n) = 1$, find $m + n$.
1997 Mexico National Olympiad, 2
In a triangle $ABC, P$ and $P'$ are points on side $BC, Q$ on side $CA$, and $R $ on side $AB$, such that $\frac{AR}{RB}=\frac{BP}{PC}=\frac{CQ}{QA}=\frac{CP'}{P'B}$ . Let $G$ be the centroid of triangle $ABC$ and $K$ be the intersection point of $AP'$ and $RQ$. Prove that points $P,G,K$ are collinear.
2013 AIME Problems, 13
In $\triangle ABC$, $AC = BC$, and point $D$ is on $\overline{BC}$ so that $CD = 3 \cdot BD$. Let $E$ be the midpoint of $\overline{AD}$. Given that $CE = \sqrt{7}$ and $BE = 3$, the area of $\triangle ABC$ can be expressed in the form $m\sqrt{n}$, where $m$ and $n$ are positive integers and $n$ is not divisible by the square of any prime. Find $m+n$.
2007 AMC 10, 18
A circle of radius $ 1$ is surrounded by $ 4$ circles of radius $ r$ as shown. What is $ r$?
[asy]defaultpen(linewidth(.9pt));
real r = 1 + sqrt(2);
pair A = dir(45)*(r + 1);
pair B = dir(135)*(r + 1);
pair C = dir(-135)*(r + 1);
pair D = dir(-45)*(r + 1);
draw(Circle(origin,1));
draw(Circle(A,r));draw(Circle(B,r));draw(Circle(C,r));draw(Circle(D,r));
draw(A--(dir(45)*r + A));
draw(B--(dir(45)*r + B));
draw(C--(dir(45)*r + C));
draw(D--(dir(45)*r + D));
draw(origin--(dir(25)));
label("$r$",midpoint(A--(dir(45)*r + A)), SE);
label("$r$",midpoint(B--(dir(45)*r + B)), SE);
label("$r$",midpoint(C--(dir(45)*r + C)), SE);
label("$r$",midpoint(D--(dir(45)*r + D)), SE);
label("$1$",origin,W);[/asy]$ \textbf{(A)}\ \sqrt {2}\qquad \textbf{(B)}\ 1 \plus{} \sqrt {2}\qquad \textbf{(C)}\ \sqrt {6}\qquad \textbf{(D)}\ 3\qquad \textbf{(E)}\ 2 \plus{} \sqrt {2}$
2013 SDMO (Middle School), 3
Let $ABCD$ be a square, and let $\Gamma$ be the circle that is inscribed in square $ABCD$. Let $E$ and $F$ be points on line segments $AB$ and $AD$, respectively, so that $EF$ is tangent to $\Gamma$. Find the ratio of the area of triangle $CEF$ to the area of square $ABCD$.
1966 IMO Shortlist, 63
Let $ ABC$ be a triangle, and let $ P$, $ Q$, $ R$ be three points in the interiors of the sides $ BC$, $ CA$, $ AB$ of this triangle. Prove that the area of at least one of the three triangles $ AQR$, $ BRP$, $ CPQ$ is less than or equal to one quarter of the area of triangle $ ABC$.
[i]Alternative formulation:[/i] Let $ ABC$ be a triangle, and let $ P$, $ Q$, $ R$ be three points on the segments $ BC$, $ CA$, $ AB$, respectively. Prove that
$ \min\left\{\left|AQR\right|,\left|BRP\right|,\left|CPQ\right|\right\}\leq\frac14\cdot\left|ABC\right|$,
where the abbreviation $ \left|P_1P_2P_3\right|$ denotes the (non-directed) area of an arbitrary triangle $ P_1P_2P_3$.
1985 IMO Longlists, 83
Let $\Gamma_i, i = 0, 1, 2, \dots$ , be a circle of radius $r_i$ inscribed in an angle of measure $2\alpha$ such that each $\Gamma_i$ is externally tangent to $\Gamma_{i+1}$ and $r_{i+1} < r_i$. Show that the sum of the areas of the circles $\Gamma_i$ is equal to the area of a circle of radius $r =\frac 12 r_0 (\sqrt{ \sin \alpha} + \sqrt{\text{csc} \alpha}).$
1973 AMC 12/AHSME, 28
If $ a$, $ b$, and $ c$ are in geometric progression (G.P.) with $ 1 < a < b < c$ and $ n > 1$ is an integer, then $ \log_an$, $ \log_b n$, $ \log_c n$ form a sequence
$ \textbf{(A)}\ \text{which is a G.P} \qquad$
$ \textbf{(B)}\ \text{whichi is an arithmetic progression (A.P)} \qquad$
$ \textbf{(C)}\ \text{in which the reciprocals of the terms form an A.P} \qquad$
$ \textbf{(D)}\ \text{in which the second and third terms are the }n\text{th powers of the first and second respectively} \qquad$
$ \textbf{(E)}\ \text{none of these}$
2013 Dutch IMO TST, 2
Let $P$ be the point of intersection of the diagonals of a convex quadrilateral $ABCD$.Let $X,Y,Z$ be points on the interior of $AB,BC,CD$ respectively such that $\frac{AX}{XB}=\frac{BY}{YC}=\frac{CZ}{ZD}=2$. Suppose that $XY$ is tangent to the circumcircle of $\triangle CYZ$ and that $Y Z$ is tangent to the circumcircle of $\triangle BXY$.Show that $\angle APD=\angle XYZ$.
2025 JBMO TST - Turkey, 7
$ABCDE$ is a pentagon whose vertices lie on circle $\omega$ where $\angle DAB=90^{\circ}$. Let $EB$ and $AC$ intersect at $F$, $EC$ meet $BD$ at $G$. $M$ is the midpoint of arc $AB$ on $\omega$, not containing $C$. If $FG\parallel DE\parallel CM$ holds, then what is the value of $\frac{|GE|}{|GD|}$?
2020 AMC 8 -, 24
A large square region is paved with $n^2$ gray square tiles, each measuring $s$ inches on a side. A border $d$ inches wide surrounds each tile. The figure below shows the case for $n = 3$. When $n = 24$, the $576$ gray tiles cover $64\%$ of the area of the large square region. What is the ratio $\frac{d}{s}$ for this larger value of $n$?
[asy]
draw((0,0)--(13,0)--(13,13)--(0,13)--cycle);
filldraw((1,1)--(4,1)--(4,4)--(1,4)--cycle, mediumgray);
filldraw((1,5)--(4,5)--(4,8)--(1,8)--cycle, mediumgray);
filldraw((1,9)--(4,9)--(4,12)--(1,12)--cycle, mediumgray);
filldraw((5,1)--(8,1)--(8,4)--(5,4)--cycle, mediumgray);
filldraw((5,5)--(8,5)--(8,8)--(5,8)--cycle, mediumgray);
filldraw((5,9)--(8,9)--(8,12)--(5,12)--cycle, mediumgray);
filldraw((9,1)--(12,1)--(12,4)--(9,4)--cycle, mediumgray);
filldraw((9,5)--(12,5)--(12,8)--(9,8)--cycle, mediumgray);
filldraw((9,9)--(12,9)--(12,12)--(9,12)--cycle, mediumgray);
[/asy]
$\textbf{(A) }\frac6{25} \qquad \textbf{(B) }\frac14 \qquad \textbf{(C) }\frac9{25} \qquad \textbf{(D) }\frac7{16} \qquad \textbf{(E) }\frac9{16}$
2009 Sharygin Geometry Olympiad, 17
Given triangle $ ABC$ and two points $ X$, $ Y$ not lying on its circumcircle. Let $ A_1$, $ B_1$, $ C_1$ be the projections of $ X$ to $ BC$, $ CA$, $ AB$, and $ A_2$, $ B_2$, $ C_2$ be the projections of $ Y$. Prove that the perpendiculars from $ A_1$, $ B_1$, $ C_1$ to $ B_2C_2$, $ C_2A_2$, $ A_2B_2$, respectively, concur if and only if line $ XY$ passes through the circumcenter of $ ABC$.
2013 Brazil Team Selection Test, 5
Let $ABCD$ be a quadrilateral inscribed in a circle $\omega$, and let $P$ be a point on the extension of $AC$ such that $PB$ and $PD$ are tangent to $\omega$. The tangent at $C$ intersects $PD$ at $Q$ and the line $AD$ at $R$. Let $E$ be the second point of intersection between $AQ$ and $\omega$. Prove that $B$, $E$, $R$ are collinear.
2016 Bosnia And Herzegovina - Regional Olympiad, 3
Nine lines are given such that every one of them intersects given square $ABCD$ on two trapezoids, which area ratio is $2 : 3$. Prove that at least $3$ of those $9$ lines pass through the same point
1990 Brazil National Olympiad, 4
$ABCD$ is a quadrilateral,
$E,F,G,H$ are midpoints of $AB,BC,CD,DA$.
Find the point P such that
$area (PHAE) = area (PEBF) = area (PFCG) = area (PGDH)$.
1998 North Macedonia National Olympiad, 3
A triangle $ABC$ is given. For every positive numbers $p,q,r$, let $A',B',C'$ be the points such that $\overrightarrow{BA'} = p\overrightarrow{AB}, \overrightarrow{CB'}=q\overrightarrow{BC} $, and $\overrightarrow{AC'}=r\overrightarrow{CA}$. Define $f(p,q,r)$ as the ratio of the area of $\vartriangle A'B'C'$ to that of $\vartriangle ABC$. Prove that for all positive numbers $x,y,z$ and every positive integer $n$, $\sum_{k=0}^{n-1}f(x+k,y+k,z+k) = n^3f\left(\frac{x}{n},\frac{y}{n},\frac{z}{n}\right)$.
2000 Baltic Way, 5
Let $ ABC$ be a triangle such that \[ \frac{BC}{AB \minus{} BC}\equal{}\frac{AB \plus{} BC}{AC}\] Determine the ratio $ \angle A : \angle C$.
PEN O Problems, 31
Prove that, for any integer $a_{1}>1$, there exist an increasing sequence of positive integers $a_{1}, a_{2}, a_{3}, \cdots$ such that \[a_{1}+a_{2}+\cdots+a_{n}\; \vert \; a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}\] for all $n \in \mathbb{N}$.
2008 National Olympiad First Round, 24
How many of the numbers
\[
a_1\cdot 5^1+a_2\cdot 5^2+a_3\cdot 5^3+a_4\cdot 5^4+a_5\cdot 5^5+a_6\cdot 5^6
\]
are negative if $a_1,a_2,a_3,a_4,a_5,a_6 \in \{-1,0,1 \}$?
$
\textbf{(A)}\ 121
\qquad\textbf{(B)}\ 224
\qquad\textbf{(C)}\ 275
\qquad\textbf{(D)}\ 364
\qquad\textbf{(E)}\ 375
$
2019 LIMIT Category A, Problem 6
Vessel $A$ has liquids $X$ and $Y$ in the ratio $X:Y=8:7$. Vessel $B$ holds a mixture of $X$ and $Y$ in the ratio $X:Y=5:9$. What ratio should you mix the liquids in both vessels if you need the mixture to be $X:Y=1:1$?
$\textbf{(A)}~4:3$
$\textbf{(B)}~30:7$
$\textbf{(C)}~17:25$
$\textbf{(D)}~7:30$
2006 China Second Round Olympiad, 9
Suppose points $F_1, F_2$ are the left and right foci of the ellipse $\frac{x^2}{16}+\frac{y^2}{4}=1$ respectively, and point $P$ is on line $l:$, $x-\sqrt{3} y+8+2\sqrt{3}=0$. Find the value of ratio $\frac{|PF_1|}{|PF_2|}$ when $\angle F_1PF_2$ reaches its maximum value.
2016 Oral Moscow Geometry Olympiad, 2
In the rectangle there is a broken line, the neighboring links of which are perpendicular and equal to the smaller side of the rectangle (see the figure). Find the ratio of the sides of the rectangle.
[img]https://2.bp.blogspot.com/-QYj53KiPTJ8/XT_mVIw876I/AAAAAAAAKbE/gJ1roU4Bx-kfGVfJxYMAuLE0Ax0glRbegCK4BGAYYCw/s1600/oral%2Bmoscow%2B2016%2B8.9%2Bp2.png[/img]
2006 Iran MO (3rd Round), 6
Assume that $C$ is a convex subset of $\mathbb R^{d}$. Suppose that $C_{1},C_{2},\dots,C_{n}$ are translations of $C$ that $C_{i}\cap C\neq\emptyset$ but $C_{i}\cap C_{j}=\emptyset$. Prove that \[n\leq 3^{d}-1\] Prove that $3^{d}-1$ is the best bound.
P.S. In the exam problem was given for $n=3$.