This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 884

2017 VJIMC, 2

Prove or disprove the following statement. If $g:(0,1) \to (0,1)$ is an increasing function and satisfies $g(x) > x$ for all $x \in (0,1)$, then there exists a continuous function $f:(0,1) \to \mathbb{R}$ satisfying $f(x) < f(g(x)) $ for all $x \in (0,1)$, but $f$ is not an increasing function.

2022 Miklós Schweitzer, 1

We say that a set $A \subset \mathbb Z$ is irregular if, for any different elements $x, y \in A$, there is no element of the form $x + k(y -x)$ different from $x$ and $y$ (where $k$ is an integer). Is there an infinite irregular set?

1995 IMC, 11

a) Prove that every function of the form $$f(x)=\frac{a_{0}}{2}+\cos(x)+\sum_{n=2}^{N}a_{n}\cos(nx)$$ with $|a_{0}|<1$ has positive as well as negative values in the period $[0,2\pi)$. b) Prove that the function $$F(x)=\sum_{n=1}^{100}\cos(n^{\frac{3}{2}}x)$$ has at least $40$ zeroes in the interval $(0,1000)$.

2009 District Olympiad, 1

Let $ f:[0,\infty )\longrightarrow [0,\infty ) $ a nonincreasing function that satisfies the inequality: $$ \int_0^x f(t)dt <1,\quad\forall x\ge 0. $$ Prove the following affirmations: [b]a)[/b] $ \exists \lim_{x\to\infty} \int_0^x f(t)dt \in\mathbb{R} . $ [b]b)[/b] $ \lim_{x\to\infty} xf(x) =0. $

2016 VJIMC, 4

Let $f: [0,\infty) \to \mathbb{R}$ be a continuously differentiable function satisfying $$f(x) = \int_{x - 1}^xf(t)\mathrm{d}t$$ for all $x \geq 1$. Show that $f$ has bounded variation on $[1,\infty)$, i.e. $$\int_1^{\infty} |f'(x)|\mathrm{d}x < \infty.$$

2001 District Olympiad, 4

a)Prove that $\ln(1+x)\le x,\ (\forall)x\ge 0$. b)Let $a>0$. Prove that: \[\lim_{n\to \infty} n\int_0^1\frac{x^n}{a+x^n}dx=\ln \frac{a+1}{a}\] [i]***[/i]

2014 ISI Entrance Examination, 7

Let $f: [0,\infty)\to \mathbb{R}$ a non-decreasing function. Then show this inequality holds for all $x,y,z$ such that $0\le x<y<z$. \begin{align*} & (z-x)\int_{y}^{z}f(u)\,\mathrm{du}\ge (z-y)\int_{x}^{z}f(u)\,\mathrm{du} \end{align*}

2023 Romania National Olympiad, 4

Let $f:[0,1] \rightarrow \mathbb{R}$ a non-decreasing function, $f \in C^1,$ for which $f(0) = 0.$ Let $g:[0,1] \rightarrow \mathbb{R}$ a function defined by \[ g(x) = f(x) + (x - 1) f'(x), \forall x \in [0,1]. \] a) Show that \[ \int_{0}^{1} g(x) \text{dx} = 0. \] b) Prove that for all functions $\phi :[0,1] \rightarrow [0,1],$ convex and differentiable with $\phi(0) = 0$ and $\phi(1) = 1,$ the inequality holds \[ \int_{0}^{1} g( \phi(t)) \text{dt} \leq 0. \]

1963 Miklós Schweitzer, 6

Show that if $ f(x)$ is a real-valued, continuous function on the half-line $ 0\leq x < \infty$, and \[ \int_0^{\infty} f^2(x)dx <\infty\] then the function \[ g(x)\equal{}f(x)\minus{}2e^{\minus{}x}\int_0^x e^tf(t)dt\] satisfies \[ \int _0^{\infty}g^2(x)dx\equal{}\int_0^{\infty}f^2(x)dx.\] [B. Szokefalvi-Nagy]

1954 Miklós Schweitzer, 3

[b]3.[/b] Is there a real-valued function $Af$, defined on the space of the functions, continuous on $[0,1]$, such that $f(x)\leq g(x) $ and$f(x)\not\equiv g(x) $ inply $Af< Ag$? Is this also true if the functions $f(x)$ are required to be monotonically increasing (rather than continuous) on $[0,1]$? [b](R.4)[/b]

2014 Cezar Ivănescu, 3

Find the real numbers $ \lambda $ that have the property that there is a nonconstant, continuous function $ u: [0,1]\longrightarrow\mathbb{R} $ satisfying $$ u(x)=\lambda\int_0^1 (x-3y)u(y)dy , $$ for any $ x $ in the interval $ [0,1]. $

2011 Romania National Olympiad, 2

[color=darkred]Let $u:[a,b]\to\mathbb{R}$ be a continuous function that has finite left-side derivative $u_l^{\prime}(x)$ in any point $x\in (a,b]$ . Prove that the function $u$ is monotonously increasing if and only if $u_l^{\prime}(x)\ge 0$ , for any $x\in (a,b]$ .[/color]

1950 Miklós Schweitzer, 9

Find the sum of the series $ x\plus{}\frac{x^3}{1\cdot 3}\plus{}\frac{x^5}{1\cdot 3\cdot 5}\plus{}\cdots\plus{}\frac{x^{2n\plus{}1}}{1\cdot 3\cdot 5\cdot \cdots \cdot (2n\plus{}1)}\plus{}\cdots$

2014-2015 SDML (High School), 6

Let $f\left(x\right)=x^2-14x+52$ and $g\left(x\right)=ax+b$, where $a$ and $b$ are positive. Find $a$, given that $f\left(g\left(-5\right)\right)=3$ and $f\left(g\left(0\right)\right)=103$. $\text{(A) }2\qquad\text{(B) }5\qquad\text{(C) }7\qquad\text{(D) }10\qquad\text{(E) }17$

2011 Romania National Olympiad, 3

[color=darkred]Let $g:\mathbb{R}\to\mathbb{R}$ be a continuous and strictly decreasing function with $g(\mathbb{R})=(-\infty,0)$ . Prove that there are no continuous functions $f:\mathbb{R}\to\mathbb{R}$ with the property that there exists a natural number $k\ge 2$ so that : $\underbrace{f\circ f\circ\ldots\circ f}_{k\text{ times}}=g$ . [/color]

1974 Miklós Schweitzer, 5

Let $ \{f_n \}_{n=0}^{\infty}$ be a uniformly bounded sequence of real-valued measurable functions defined on $ [0,1]$ satisfying \[ \int_0^1 f_n^2=1.\] Further, let $ \{ c_n \}$ be a sequence of real numbers with \[ \sum_{n=0}^{\infty} c_n^2= +\infty.\] Prove that some re-arrangement of the series $ \sum_{n=0}^{\infty} c_nf_n$ is divergent on a set of positive measure. [i]J. Komlos[/i]

2024 CIIM, 6

Given a real number $x$, define the series \[ S(x) = \sum_{n=1}^{\infty} \{n! \cdot x\}, \] where $\{s\} = s - \lfloor s \rfloor$ is the fractional part of the number $s$. Determine if there exists an irrational number $x$ for which the series $S(x)$ converges.

1995 IMC, 4

Let $F:(1,\infty) \rightarrow \mathbb{R}$ be the function defined by $$F(x)=\int_{x}^{x^{2}} \frac{dt}{\ln(t)}.$$ Show that $F$ is injective and find the set of values of $F$.

2016 IMC, 1

Let $f : \left[ a, b\right]\rightarrow\mathbb{R}$ be continuous on $\left[ a, b\right]$ and differentiable on $\left( a, b\right)$. Suppose that $f$ has infinitely many zeros, but there is no $x\in \left( a, b\right)$ with $f(x)=f'(x)=0$. (a) Prove that $f(a)f(b)=0$. (b) Give an example of such a function on $\left[ 0, 1\right]$. (Proposed by Alexandr Bolbot, Novosibirsk State University)

2011 Graduate School Of Mathematical Sciences, The Master Cource, The University Of Tokyo, 3

Let $a$ be a positive real number. Evaluate $I=\int_0^{+\infty} \frac{\sin x\cos x}{x(x^2+a^2)}dx.$

2016 ISI Entrance Examination, 8

Suppose that $(a_n)_{n\geq 1}$ is a sequence of real numbers satisfying $a_{n+1} = \frac{3a_n}{2+a_n}$. (i) Suppose $0 < a_1 <1$, then prove that the sequence $a_n$ is increasing and hence show that $\lim_{n \to \infty} a_n =1$. (ii) Suppose $ a_1 >1$, then prove that the sequence $a_n$ is decreasing and hence show that $\lim_{n \to \infty} a_n =1$.

1997 IMC, 5

For postive integer $n$ consider the hyperplane \[ R_0^n = {x=(x_1x_2...x_n)\in\mathbb{R}^n : \sum\limits^n_{i=1}x_i=0} \] and the lattice \[ Z_0^n = \{y \in R^n_0 : \ (\forall i: y_i \in \mathbb{N})\} \] Define the quasi-norm in $\mathbb{R}^n$ by $\|x\|_p= \sqrt[p]{\sum\limits^{n}_{i=1}|x_i|^p}$ if $0<p<\infty$ and $\|x\|_{\infty} = \max\limits_i |x_i|$. (a) If $x\in R^n_0$ so that $\max x_i - \min x_i \le 1$ then prove that $\forall p \in [1,\infty], \forall y \in Z^n_0$ we have $\|x\|_p\le\|x+y\|_p$ (b) Prove that for every $p\in ]0,1[$, there exist $n \in \mathbb{N}, x\in R^n_0, y\in Z^n_0$ with $\max x_i - \min x_i \le 1$ and $\|x\|_p>\|x+y\|_p$

2005 Gheorghe Vranceanu, 4

Let be a sequence of real numbers $ \left( x_n \right)_{n\geqslant 0} $ with $ x_0\neq 0,1 $ and defined as $ x_{n+1}=x_n+x_n^{-1/x_0} . $ [b]a)[/b] Show that the sequence $ \left( x_n\cdot n^{-\frac{x_0}{1+x_0}} \right)_{n\geqslant 0} $ is convergent. [b]b)[/b] Prove that $ \inf_{x_0\neq 0,1} \lim_{n\to\infty } x_n\cdot n^{-\frac{x_0}{1+x_0}} =1. $

2014 BMT Spring, 5

Determine $$\lim_{x\to\infty}\frac{\sqrt{x+2014}}{\sqrt x+\sqrt{x+2014}}$$

1985 Traian Lălescu, 2.1

Let $ f:[-1,1]\longrightarrow\mathbb{R} $ a derivable function and a non-negative integer $ n. $ Show that there is a $ c\in [-1,1] $ so that: $$ \int_{-1}^1 x^{2n+1} f(x)dx =\frac{2}{2n+3}f'(c). $$