This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 884

2003 IMC, 6

Let $ p=\sum\limits_{k=0}^n a_kX^k\in R[X] $ a polynomial such that all his roots lie in the half plane $ \{z\in C| Re(z)<0 \}. $ Prove that $ a_ka_{k+3}<a_{k+1}a_{k+2}, $ for every k=0,1,2...,n-3.

1985 Traian Lălescu, 1.2

Is there a real interval $ I $ for which there exists a primitivable function $ f:I\longrightarrow I $ with the property that $ (f\circ f) (x)=-x, $ for all $ x\in I $ ?

2015 District Olympiad, 4

Let $ \left( x_n\right)_{n\ge 1} $ be a sequence of real numbers of the interval $ [1,\infty) . $ Suppose that the sequence $ \left( \left[ x_n^k\right]\right)_{n\ge 1} $ is convergent for all natural numbers $ k. $ Prove that $ \left( x_n\right)_{n\ge 1} $ is convergent. Here, $ [\beta ] $ means the greatest integer smaller than $ \beta . $

1953 Miklós Schweitzer, 4

[b]4.[/b] Show that every closed curve c of length less than $ 2\pi $ on the surface of the unit sphere lies entirely on the surface of some hemisphere of the unit sphere. [b](G. 8)[/b]

2007 Nicolae Coculescu, 3

Let $ F:\mathbb{R}\longrightarrow\mathbb{R} $ be a primitive with $ F(0)=0 $ of the function $ f:\mathbb{R}\longrightarrow\mathbb{R} $ defined as $ f(x)=\sin (x^2) , $ and let be a sequence $ \left( a_n \right)_{n\ge 0} $ with $ a_0\in (0,1) $ and defined as $ a_{n}=a_{n-1}-F\left( a_{n-1} \right) . $ Calculate $ \lim_{n\to\infty } a_n\sqrt{n} . $ [i]Florian Dumitrel[/i]

2004 Miklós Schweitzer, 8

Prove that for any $0<\delta <2\pi$ there exists a number $m>1$ such that for any positive integer $n$ and unimodular complex numbers $z_1,\ldots, z_n$ with $z_1^v+\dots+z_n^v=0$ for all integer exponents $1\le v\le m$, any arc of length $\delta$ of the unit circle contains at least one of the numbers $z_1,\ldots, z_n$.

1969 Miklós Schweitzer, 5

Find all continuous real functions $ f,g$ and $ h$ defined on the set of positive real numbers and satisfying the relation \[ f(x\plus{}y)\plus{}g(xy)\equal{}h(x)\plus{}h(y)\] for all $ x>0$ and $ y>0$. [i]Z. Daroczy[/i]

1961 Miklós Schweitzer, 8

[b]8.[/b] Let $f(x)$ be a convex function defined on the interval $[0, \frac {1}{2}]$ with $f(0)=0$ and $f(\frac{1}{2})=1$; Let further $f(x)$ be differentiable in $(0, \frac {1}{2})$, and differentiable at $0$ and $\frac{1}{2}$ from the right and from the left, respectively. Finally, let $f'(0)>1$. Extend $f(x)$ to $[0.1]$ in the following manner: let $f(x)= f(1-x)$ if $x \in (\frac {1} {2}, 1]$. Show that the set of the points $x$ for shich the terms of the sequence $x_{n+1}=f(x_n)$ ($x_0=x; n = 0, 1, 2, \dots $) are not all different is everywhere dense in $[0,1]$; [b](R. 10)[/b]

2019 VJIMC, 3

Let $p$ be an even non-negative continous function with $\int _{\mathbb{R}} p(x) dx =1$ and let $n$ be a positive integer. Let $\xi_1,\xi_2,\xi_3 \dots ,\xi_n$ be independent identically distributed random variables with density function $p$ . Define \begin{align*} X_{0} & = 0 \\ X_{1} & = X_0+ \xi_1 \\ & \vdotswithin{ = }\notag \\ X_{n} & = X_{n-1} + \xi_n \end{align*} Prove that the probability that all random variables $X_1,X_2 \dots X_{n-1}$ lie between $X_0$ and $X_n$ is $\frac{1}{n}$. [i]Proposed by Fedor Petrov (St.Petersburg State University).[/i]

1996 IMC, 12

i) Prove that for every sequence $(a_{n})_{n\in \mathbb{N}}$, such that $a_{n}>0$ for all $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty}a_{n}<\infty$, we have $$\sum_{n=1}^{\infty}(a_{1}a_{2} \cdots a_{n})^{\frac{1}{n}}< e\sum_{n=1}^{\infty}a_{n}.$$ ii) Prove that for every $\epsilon>0$ there exists a sequence $(b_{n})_{n\in \mathbb{N}}$ such that $b_{n}>0$ for all $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty}b_{n}<\infty$ and $$\sum_{n=1}^{\infty}(b_{1}b_{2} \cdots b_{n})^{\frac{1}{n}}> (e-\epsilon)\sum_{n=1}^{\infty}b_{n}.$$

2005 Gheorghe Vranceanu, 4

Let be a sequence of real numbers $ \left( x_n \right)_{n\geqslant 0} $ with $ x_0\neq 0,1 $ and defined as $ x_{n+1}=x_n+x_n^{-1/x_0} . $ [b]a)[/b] Show that the sequence $ \left( x_n\cdot n^{-\frac{x_0}{1+x_0}} \right)_{n\geqslant 0} $ is convergent. [b]b)[/b] Prove that $ \inf_{x_0\neq 0,1} \lim_{n\to\infty } x_n\cdot n^{-\frac{x_0}{1+x_0}} =1. $

2006 Pre-Preparation Course Examination, 1

Suppose that $X$ is a compact metric space and $T: X\rightarrow X$ is a continous function. Prove that $T$ has a returning point. It means there is a strictly increasing sequence $n_i$ such that $\lim_{k\rightarrow \infty} T^{n_k}(x_0)=x_0$ for some $x_0$.

2020 Jozsef Wildt International Math Competition, W21

Evaluate $$\lim_{n\to\infty}\left(\frac{1+\frac13+\ldots+\frac1{2n+1}}{\ln\sqrt n}\right)^{\ln\sqrt n}$$ [i]Proposed by Ángel Plaza[/i]

1966 Miklós Schweitzer, 9

If $ \sum_{m=-\infty}^{+\infty} |a_m| < \infty$, then what can be said about the following expression? \[ \lim_{n \rightarrow \infty} \frac{1}{2n+1} \sum_{m=-\infty}^{+\infty} |a_{m-n}+a_{m-n+1}+...+a_{m+n}|.\] [i]P. Turan[/i]

2004 District Olympiad, 1

Let $(x_n)_{n\ge 0}$ a sequence of real numbers defined by $x_0>0$ and $x_{n+1}=x_n+\frac{1}{\sqrt{x_n}}$. Compute $\lim_{n\to \infty}x_n$ and $\lim_{n\to \infty} \frac{x_n^3}{n^2}$.

1975 Miklós Schweitzer, 6

Let $ f$ be a differentiable real function and let $ M$ be a positive real number. Prove that if \[ |f(x\plus{}t)\minus{}2f(x)\plus{}f(x\minus{}t)| \leq Mt^2 \; \textrm{for all}\ \;x\ \; \textrm{and}\ \;t\ , \] then \[ |f'(x\plus{}t)\minus{}f'(x)| \leq M|t|.\] [i]J. Szabados[/i]

2010 Putnam, A2

Find all differentiable functions $f:\mathbb{R}\to\mathbb{R}$ such that \[f'(x)=\frac{f(x+n)-f(x)}n\] for all real numbers $x$ and all positive integers $n.$

2001 IMC, 3

Find $\lim_{t\rightarrow 1^-} (1-t) \sum_{n=1}^{\infty}\frac{t^n}{1+t^n}$.

2023 Romania National Olympiad, 1

Determine twice differentiable functions $f: \mathbb{R} \rightarrow \mathbb{R}$ which verify relation \[ \left( f'(x) \right)^2 + f''(x) \leq 0, \forall x \in \mathbb{R}. \]

2009 Romania National Olympiad, 1

Find all functions $ f\in\mathcal{C}^1 [0,1] $ that satisfy $ f(1)=-1/6 $ and $$ \int_0^1 \left( f'(x) \right)^2 dx\le 2\int_0^1 f(x)dx. $$

2024 Romania National Olympiad, 4

Let $f,g:\mathbb{R}\to\mathbb{R}$ be functions with $g(x)=2f(x)+f(x^2),$ for all $x \in \mathbb{R}.$ a) Prove that, if $f$ is bounded in a neighbourhood of the origin and $g$ is continuous in the origin, then $f$ is continuous in the origin. b) Provide an example of function $f$, discontinuous in the origin, for which the function $g$ is continuous in the origin.

2022 Brazil Undergrad MO, 3

Let $(a_n)_{n \in \mathbb{N}}$ be a sequence of integers. Define $a_n^{(0)} = a_n$ for all $n \in \mathbb{N}$. For all $M \geq 0$, we define $(a_n^{(M + 1)})_{n \in \mathbb{N}}:\, a_n^{(M + 1)} = a_{n + 1}^{(M)} - a_n^{(M)}, \forall n \in \mathbb{N}$. We say that $(a_n)_{n \in \mathbb{N}}$ is $\textrm{(M + 1)-self-referencing}$ if there exists $k_1$ and $k_2$ fixed positive integers such that $a_{n + k_1} = a_{n + k_2}^{(M + 1)}, \forall n \in \mathbb{N}$. (a) Does there exist a sequence of integers such that the smallest $M$ such that it is $\textrm{M-self-referencing}$ is $M = 2022$? (a) Does there exist a stricly positive sequence of integers such that the smallest $M$ such that it is $\textrm{M-self-referencing}$ is $M = 2022$?

2019 Simon Marais Mathematical Competition, A4

Suppose $x_1,x_2,x_3,\dotsc$ is a strictly decreasing sequence of positive real numbers such that the series $x_1+x_2+x_3+\cdots$ diverges. Is it necessary true that the series $\sum_{n=2}^{\infty}{\min \left\{ x_n,\frac{1}{n\log (n)}\right\} }$ diverges?

1996 Romania National Olympiad, 2

Suppose that $ f: [a,b]\rightarrow \mathbb{R} $ be a monotonic function and for every $ x_1,x_2\in [a,b] $ that $ x_1<x_2 $ ,there exist $ c\in (a,b) $ such that $ \int _{x_1}^{x_2}f(x)dx=f(c)(x_1-x_2) $ a) Show that $ f $ be the continuous function on interval $ (a,b) $ b) Suppose that $ f $ is integrable function on interval $ [a,b] $ but $ f $ isn't a monotonic function then ,is it the result of part a) right?

2018 IMC, 1

Let $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ be two sequences of positive numbers. Show that the following statements are equivalent: [list=1] [*]There is a sequence $(c_n)_{n=1}^{\infty}$ of positive numbers such that $\sum_{n=1}^{\infty}{\frac{a_n}{c_n}}$ and $\sum_{n=1}^{\infty}{\frac{c_n}{b_n}}$ both converge;[/*] [*]$\sum_{n=1}^{\infty}{\sqrt{\frac{a_n}{b_n}}}$ converges.[/*] [/list] [i]Proposed by Tomáš Bárta, Charles University, Prague[/i]