This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 884

2023 CIIM, 4

For a positive integer $n$, $\sigma(n)$ denotes the sum of the positive divisors of $n$. Determine $$\limsup\limits_{n\rightarrow \infty} \frac{\sigma(n^{2023})}{(\sigma(n))^{2023}}$$ [b]Note:[/b] Given a sequence ($a_n$) of real numbers, we say that $\limsup\limits_{n\rightarrow \infty} a_n = +\infty$ if ($a_n$) is not upper bounded, and, otherwise, $\limsup\limits_{n\rightarrow \infty} a_n$ is the smallest constant $C$ such that, for every real $K > C$, there is a positive integer $N$ with $a_n < K$ for every $n > N$.

Gheorghe Țițeica 2025, P3

Let $(a_n)_{n\geq 0}$ be a sequence defined by $a_0\geq 0$ and the recurrence relation $$a_{n+1}=\frac{a_n^2-1}{n+1},$$ for all $n\geq 0$. Prove that here exists a real number $a> 0$ such that: [list] [*] if $a_0\geq a,$ $\lim_{n\rightarrow\infty}a_n = \infty$; [*] if $a_0\in [0,a),$ $\lim_{n\rightarrow\infty}a_n = 0$.

2025 VJIMC, 3

Let us call a sequence $(b_1, b_2, \ldots)$ of positive integers fast-growing if $b_{n+1} \geq b_n + 2$ for all $n \geq 1$. Also, for a sequence $a = (a(1), a(2), \ldots)$ of real numbers and a sequence $b = (b_1, b_2, \ldots)$ of positive integers, let us denote \[ S(a, b) = \sum_{n=1}^{\infty} \left| a(b_n) + a(b_n + 1) + \cdots + a(b_{n+1} - 1) \right|. \] a) Do there exist two fast-growing sequences $b = (b_1, b_2, \ldots)$, $c = (c_1, c_2, \ldots)$ such that for every sequence $a = (a(1), a(2), \ldots)$, if all the series \[ \sum_{n=1}^{\infty} a(n), \quad S(a, b) \quad \text{and} \quad S(a, c) \] are convergent, then the series $\sum_{n=1}^{\infty} |a(n)|$ is also convergent? b) Do there exist three fast-growing sequences $b = (b_1, b_2, \ldots)$, $c = (c_1, c_2, \ldots)$, $d = (d_1, d_2, \ldots)$ such that for every sequence $a = (a(1), a(2), \ldots)$, if all the series \[ S(a, b), \quad S(a, c) \quad \text{and} \quad S(a, d) \] are convergent, then the series $\sum_{n=1}^{\infty} |a(n)|$ is also convergent?

2022 ISI Entrance Examination, 6

Consider a sequence $P_{1}, P_{2}, \ldots$ of points in the plane such that $P_{1}, P_{2}, P_{3}$ are non-collinear and for every $n \geq 4, P_{n}$ is the midpoint of the line segment joining $P_{n-2}$ and $P_{n-3}$. Let $L$ denote the line segment joining $P_{1}$ and $P_{5}$. Prove the following: [list=a] [*] The area of the triangle formed by the points $P_{n}, P_{n-1}, P_{n-2}$ converges to zero as $n$ goes to infinity. [*] The point $P_{9}$ lies on $L$. [/list]

2010 Miklós Schweitzer, 7

Is there any sequence $(a_n)_{n=1}^{\infty}$ of non-negative numbers, for which $\sum_{n=1}^{\infty} a_n^2<\infty$ , but $\sum_{n=1}^{\infty}\left(\sum_{k=1}^{\infty}\frac{a_{kn}}{k} \right)^2=\infty$ ? [hide=Remark]That contest - Miklos Schweitzer 2010- is missing on the contest page here for now being. The statements of all problems that year can be found [url=http://www.math.u-szeged.hu/~mmaroti/schweitzer/]here[/url], but unfortunately only in Hungarian. I tried google translate but it was a mess. So, it would be wonderful if someone knows Hungarian and wish to translate it. [/hide]

2018 IMC, 7

Let $(a_n)_{n=0}^{\infty}$ be a sequence of real numbers such that $a_0=0$ and $$a_{n+1}^3=a_n^2-8\quad \text{for} \quad n=0,1,2,…$$ Prove that the following series is convergent: $$\sum_{n=0}^{\infty}{|a_{n+1}-a_n|}.$$ [i]Proposed by Orif Ibrogimov, National University of Uzbekistan[/i]

2025 District Olympiad, P1

Consider the sequence $(a_n)_{n\geq 1}$ given by $a_1=1$ and $a_{n+1}=\frac{a_n}{1+\sqrt{1+a_n}}$, for all $n\geq 1$. Show that $$\lim_{n\rightarrow\infty}\frac{a_{n+1}}{a_n} = \lim_{n\rightarrow\infty}\sum_{k=1}^n \log_2(1+a_k)=2.$$ [i]Mathematical Gazette[/i]

2008 Moldova MO 11-12, 2

Find the exact value of $ E\equal{}\displaystyle\int_0^{\frac\pi2}\cos^{1003}x\text{d}x\cdot\int_0^{\frac\pi2}\cos^{1004}x\text{d}x\cdot$.

2012 Miklós Schweitzer, 1

Is there any real number $\alpha$ for which there exist two functions $f,g: \mathbb{N} \to \mathbb{N}$ such that $$\alpha=\lim_{n \to \infty} \frac{f(n)}{g(n)},$$ but the function which associates to $n$ the $n$-th decimal digit of $\alpha$ is not recursive?

2011 Miklós Schweitzer, 6

Let $C_1, ..., C_d$ be compact and connected sets in $R^d$, and suppose that each convex hull of $C_i$ contains the origin. Prove that for every i there is a $c_i \in C_i$ for which the origin is contained in the convex hull of the points $c_1, ..., c_d$.

2014 Romania National Olympiad, 2

Let $ I,J $ be two intervals, $ \varphi :J\longrightarrow\mathbb{R} $ be a continuous function whose image doesn't contain $ 0, $ and $ f,g:I\longrightarrow J $ be two differentiable functions such that $ f'=\varphi\circ f,g'=\varphi\circ g $ and such that the image of $ f-g $ contains $ 0. $ Show that $ f $ and $ g $ are the same function.

2018 IMC, 4

Find all differentiable functions $f:(0,\infty) \to \mathbb{R}$ such that $$f(b)-f(a)=(b-a)f’(\sqrt{ab}) \qquad \text{for all}\qquad a,b>0.$$ [i]Proposed by Orif Ibrogimov, National University of Uzbekistan[/i]

1999 Romania National Olympiad, 4

Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function such that $$f(x)=f \left( \frac{x}{2} \right) + \frac{x}{2} f'(x), ~\forall x \in \mathbb{R}.$$ Prove that $f$ is a polynomial function of degree at most one. [hide=Note]The problem was posted quite a few times before: [url]https://artofproblemsolving.com/community/c7h100225p566080[/url] [url]https://artofproblemsolving.com/community/q11h564540p3300032[/url] [url]https://artofproblemsolving.com/community/c7h2605212p22490699[/url] [url]https://artofproblemsolving.com/community/c7h198927p1093788[/url] I'm reposting it just to have a more suitable statement for the [url=https://artofproblemsolving.com/community/c13_contests]Contest Collections[/url]. [/hide]

2008 Moldova National Olympiad, 12.2

Find the exact value of $ E\equal{}\displaystyle\int_0^{\frac\pi2}\cos^{1003}x\text{d}x\cdot\int_0^{\frac\pi2}\cos^{1004}x\text{d}x\cdot$.

2018 IMC, 10

For $R>1$ let $\mathcal{D}_R =\{ (a,b)\in \mathbb{Z}^2: 0<a^2+b^2<R\}$. Compute $$\lim_{R\rightarrow \infty}{\sum_{(a,b)\in \mathcal{D}_R}{\frac{(-1)^{a+b}}{a^2+b^2}}}.$$ [i]Proposed by Rodrigo Angelo, Princeton University and Matheus Secco, PUC, Rio de Janeiro[/i]

1971 Miklós Schweitzer, 3

Let $ 0<a_k<1$ for $ k=1,2,... .$ Give a necessary and sufficient condition for the existence, for every $ 0<x<1$, of a permutation $ \pi_x$ of the positive integers such that \[ x= \sum_{k=1}^{\infty} \frac{a_{\pi_x}(k)}{2^k}.\] [i]P. Erdos[/i]

2008 Romania National Olympiad, 1

Let $ a>0$ and $ f: [0,\infty) \to [0,a]$ be a continuous function on $ (0,\infty)$ and having Darboux property on $ [0,\infty)$. Prove that if $ f(0)\equal{}0$ and for all nonnegative $ x$ we have \[ xf(x) \geq \int^x_0 f(t) dt ,\] then $ f$ admits primitives on $ [0,\infty)$.

1995 Miklós Schweitzer, 3

Denote $\langle x\rangle$ the distance of the real number x from the nearest integer. Let f be a linear, 1 periodic, continuous real function. Prove that there exist natural n and real numbers $a_1 , ..., a_n , b_1 , ..., b_n , c_1 , ..., c_n$ such that $$f(x) = \sum_{i = 1}^n c_i \langle a_ix + b_i \rangle$$ for every x iff there is a k such that $$\sum_{j = 1}^{2^k} f \left(x+{j\over2^k}\right)$$ is constant.

2006 IberoAmerican Olympiad For University Students, 6

Let $x_0(t)=1$, $x_{k+1}(t)=(1+t^{k+1})x_k(t)$ for all $k\geq 0$; $y_{n,0}(t)=1$, $y_{n,k}(t)=\frac{t^{n-k+1}-1}{t^k-1}y_{n,k-1}(t)$ for all $n\geq 0$, $1\leq k \leq n$. Prove that $\sum_{j=0}^{n-1}(-1)^j x_{n-j-1}(t)y_{n,j}(t)=\frac{1-(-1)^n}{2}$ for all $n\geq 1$.

1986 Traian Lălescu, 2.3

Discuss $ \lim_{x\to 0}\frac{\lambda +\sin\frac{1}{x} \pm\cos\frac{1}{x}}{x} . $

2019 IMC, 3

Let $f:(-1,1)\to \mathbb{R}$ be a twice differentiable function such that $$2f’(x)+xf''(x)\geqslant 1 \quad \text{ for } x\in (-1,1).$$ Prove that $$\int_{-1}^{1}xf(x)dx\geqslant \frac{1}{3}.$$ [i]Proposed by Orif Ibrogimov, ETH Zurich and National University of Uzbekistan and Karim Rakhimov, Scuola Normale Superiore and National University of Uzbekistan[/i]

2007 Nicolae Păun, 4

Construct a function $ f:\mathbb{R}\longrightarrow\mathbb{R} $ having the following properties: $ \text{(i)} f $ is not monotonic on any real interval. $ \text{(ii)} f $ has Darboux property (intermediate value property) on any real interval. $ \text{(iii)} f(x)\leqslant f\left( x+1/n \right) ,\quad \forall x\in\mathbb{R} ,\quad \forall n\in\mathbb{N} $ [i]Alexandru Cioba[/i]

2000 IMC, 1

Does every monotone increasing function $f : \mathbb[0,1] \rightarrow \mathbb[0,1]$ have a fixed point? What about every monotone decreasing function?

2016 Korea USCM, 5

For $f(x) = \cos\left(\frac{3\sqrt{3}\pi}{8}(x-x^3 ) \right)$, find the value of $$\lim_{t\to\infty} \left( \int_0^1 f(x)^t dx \right)^\frac{1}{t} + \lim_{t\to-\infty} \left( \int_0^1 f(x)^t dx \right)^\frac{1}{t} $$

2007 Gheorghe Vranceanu, 1

Let $ M $ denote the set of the primitives of a function $ f:\mathbb{R}\longrightarrow\mathbb{R} . $ [b]ii)[/b] Show that $ M $ along with the operation $ *:M^2\longrightarrow M $ defined as $ F*G=F+G(2007) $ form a commutative group. [b]iii)[/b] Show that $ M $ is isomorphic with the additive group of real numbers.