Found problems: 884
1987 Traian Lălescu, 2.2
Let $ f:\mathbb{R}\longrightarrow\mathbb{R} ,f(x)=\left\{\begin{matrix} \sin x , & x\not\in\mathbb{Q} \\ 0, & x\in\mathbb{Q}\end{matrix}\right. . $
[b]a)[/b] Determine the maximum length of an interval $ I\subset\mathbb{R} $ such that $ f|_I $ is discontinuous everywhere, yet has the intermediate value property.
[b]b)[/b] Study the convergence of the sequence $ \left( x_n\right)_{n\in\mathbb{N}\cup\{ 0\}} $ defined by $ x_0\in (0,\pi /2),x_{n+1}=f\left( x_n\right),\forall n\ge 0. $
1962 Miklós Schweitzer, 9
Find the minimum possible sum of lengths of edges of a prism all of whose edges are tangent of a unit sphere. [Muller-Pfeiffer].
1984 Putnam, A2
Express $\sum_{k=1}^\infty\frac{6^k}{(3^{k+1}-2^{k+1})(3^k-2^k)}$ as a rational number.
2010 Gheorghe Vranceanu, 2
Let be a natural number $ n, $ a nonzero number $ \alpha, \quad n $ numbers $ a_1,a_2,\ldots ,a_n $ and $ n+1 $ functions $ f_0,f_1,f_2,\ldots ,f_n $ such that $ f_0=\alpha $ and the rest are defined recursively as
$$ f_k (x)=a_k+\int_0^x f_{k-1} (x)dx . $$
Prove that if all these functions are everywhere nonnegative, then the sum of all these functions is everywhere nonnegative.
2014 BMT Spring, 5
Determine
$$\lim_{x\to\infty}\frac{\sqrt{x+2014}}{\sqrt x+\sqrt{x+2014}}$$
1968 Miklós Schweitzer, 3
Let $ K$ be a compact topological group, and let $ F$ be a set of continuous functions defined on $ K$ that has cardinality greater that continuum. Prove that there exist $ x_0 \in K$ and $ f \not\equal{}g \in F$ such that
\[ f(x_0)\equal{}g(x_0)\equal{}\max_{x\in K}f(x)\equal{}\max_{x \in K}g(x).\]
[i]I. Juhasz[/i]
2007 VJIMC, Problem 3
Let $f:[0,1]\to\mathbb R$ be a continuous function such that $f(0)=f(1)=0$. Prove that the set
$$A:=\{h\in[0,1]:f(x+h)=f(x)\text{ for some }x\in[0,1]\}$$is Lebesgue measureable and has Lebesgue measure at least $\frac12$.
2019 ISI Entrance Examination, 6
For all natural numbers $n$, let $$A_n=\sqrt{2-\sqrt{2+\sqrt{2+\cdots+\sqrt{2}}}}\quad\text{(n many radicals)}$$ [b](a)[/b] Show that for $n\geqslant 2$, $$A_n=2\sin\frac{\pi}{2^{n+1}}$$ [b](b)[/b] Hence or otherwise, evaluate the limit $$\lim_{n\to\infty} 2^nA_n$$
2013 Brazil Team Selection Test, 4
Let $f$ and $g$ be two nonzero polynomials with integer coefficients and $\deg f>\deg g$. Suppose that for infinitely many primes $p$ the polynomial $pf+g$ has a rational root. Prove that $f$ has a rational root.
2000 VJIMC, Problem 3
Let $a_1,a_2,\ldots$ be a bounded sequence of reals. Is it true that the fact
$$\lim_{N\to\infty}\frac1N\sum_{n=1}^Na_n=b\enspace\text{ and }\enspace\lim_{N\to\infty}\frac1{\log N}\sum_{n=1}^N\frac{a_n}n=c$$implies $b=c$?
1994 IMC, 1
Let $f\in C^1[a,b]$, $f(a)=0$ and suppose that $\lambda\in\mathbb R$, $\lambda >0$, is such that
$$|f'(x)|\leq \lambda |f(x)|$$
for all $x\in [a,b]$. Is it true that $f(x)=0$ for all $x\in [a,b]$?
1997 IMC, 4
Let $\alpha$ be a real number, $1<\alpha<2$.
(a) Show that $\alpha$ can uniquely be represented as the infinte product \[ \alpha = \left(1+\dfrac1{n_1}\right)\left(1+\dfrac1{n_2}\right)\cdots \] with $n_i$ positive integers satisfying $n_i^2\le n_{i+1}$.
(b) Show that $\alpha\in\mathbb{Q}$ iff from some $k$ onwards we have $n_{k+1}=n_k^2$.
1994 Miklós Schweitzer, 5
Let H be a $G_{\delta}$ subset of $\mathbb R$ whose closure has a positive Lebesgue measure. Prove that the set $H + H + H + H = \{ x + y + z + u : x , y , z , u \in H \}$ contains an interval.
2014 District Olympiad, 1
For each positive integer $n$ we consider the function $f_{n}:[0,n]\rightarrow{\mathbb{R}}$ defined by $f_{n}(x)=\arctan{\left(\left\lfloor x\right\rfloor \right)} $, where $\left\lfloor x\right\rfloor $ denotes the floor of the real number $x$. Prove that $f_{n}$ is a Riemann Integrable function and find $\underset{n\rightarrow\infty}{\lim}\frac{1}{n}\int_{0}^{n}f_{n}(x)\mathrm{d}x.$
2024 SEEMOUS, P1
Let $(x_n)_{n\geq 1}$ be the sequence defined by $x_1\in (0,1)$ and $x_{n+1}=x_n-\frac{x_n^2}{\sqrt{n}}$ for all $n\geq 1$. Find the values of $\alpha\in\mathbb{R}$ for which the series $\sum_{n=1}^{\infty}x_n^{\alpha}$ is convergent.
1960 Miklós Schweitzer, 7
[b]7.[/b] Define the generalized derivative at $x_0$ of the function $f(x)$ by
$\lim_{h \to 0} 2 \frac{ \frac{1}{h} \int_{x_0}^{x_0+h} f(t) dt - f(x_0)}{h}$
Show that there exists a function, continuous everywhere, which is nowhere differentiable in this general sense [b]( R. 8)[/b]
2012 Putnam, 6
Let $f(x,y)$ be a continuous, real-valued function on $\mathbb{R}^2.$ Suppose that, for every rectangular region $R$ of area $1,$ the double integral of $f(x,y)$ over $R$ equals $0.$ Must $f(x,y)$ be identically $0?$
1976 Miklós Schweitzer, 5
Let $ S_{\nu}\equal{}\sum_{j\equal{}1}^n b_jz_j^{\nu} \;(\nu\equal{}0,\pm 1, \pm 2 ,...) $, where the $ b_j$ are arbitrary and the $ z_j$ are nonzero complex numbers . Prove that \[ |S_0| \leq n \max_{0<|\nu| \leq n} |S_{\nu}|.\]
[i]G. Halasz[/i]
2006 IMC, 6
Find all sequences $a_{0}, a_{1},\ldots, a_{n}$ of real numbers such that $a_{n}\neq 0$, for which the following statement is true:
If $f: \mathbb{R}\to\mathbb{R}$ is an $n$ times differentiable function
and $x_{0}<x_{1}<\ldots <x_{n}$ are real numbers such that
$f(x_{0})=f(x_{1})=\ldots =f(x_{n})=0$ then there is $h\in (x_{0}, x_{n})$ for which \[a_{0}f(h)+a_{1}f'(h)+\ldots+a_{n}f^{(n)}(h)=0.\]
1951 Miklós Schweitzer, 2
Denote by $ \mathcal{H}$ a set of sequences $ S\equal{}\{s_n\}_{n\equal{}1}^{\infty}$ of real numbers having the following properties:
(i) If $ S\equal{}\{s_n\}_{n\equal{}1}^{\infty}\in \mathcal{H}$, then $ S'\equal{}\{s_n\}_{n\equal{}2}^{\infty}\in \mathcal{H}$;
(ii) If $ S\equal{}\{s_n\}_{n\equal{}1}^{\infty}\in \mathcal{H}$ and $ T\equal{}\{t_n\}_{n\equal{}1}^{\infty}$, then
$ S\plus{}T\equal{}\{s_n\plus{}t_n\}_{n\equal{}1}^{\infty}\in \mathcal{H}$ and $ ST\equal{}\{s_nt_n\}_{n\equal{}1}^{\infty}\in \mathcal{H}$;
(iii) $ \{\minus{}1,\minus{}1,\dots,\minus{}1,\dots\}\in \mathcal{H}$.
A real valued function $ f(S)$ defined on $ \mathcal{H}$ is called a quasi-limit of $ S$ if it has the following properties:
If $ S\equal{}{c,c,\dots,c,\dots}$, then $ f(S)\equal{}c$;
If $ s_i\geq 0$, then $ f(S)\geq 0$;
$ f(S\plus{}T)\equal{}f(S)\plus{}f(T)$;
$ f(ST)\equal{}f(S)f(T)$,
$ f(S')\equal{}f(S)$
Prove that for every $ S$, the quasi-limit $ f(S)$ is an accumulation point of $ S$.
2023 District Olympiad, P4
Consider the functions $f,g,h:\mathbb{R}_{\geqslant 0}\to\mathbb{R}_{\geqslant 0}$ and the binary operation $*:\mathbb{R}_{\geqslant 0}\times \mathbb{R}_{\geqslant 0}\to \mathbb{R}_{\geqslant 0}$ defined as \[x*y=f(x)+g(y)+h(x)\cdot|x-y|,\]for all $x,y\in\mathbb{R}_{\geqslant 0}$. Suppose that $(\mathbb{R}_{\geqslant 0},*)$ is a commutative monoid. Determine the functions $f,g,h$.
2023 District Olympiad, P1
Let $f:[-\pi/2,\pi/2]\to\mathbb{R}$ be a twice differentiable function which satisfies \[\left(f''(x)-f(x)\right)\cdot\tan(x)+2f'(x)\geqslant 1,\]for all $x\in(-\pi/2,\pi/2)$. Prove that \[\int_{-\pi/2}^{\pi/2}f(x)\cdot \sin(x) \ dx\geqslant \pi-2.\]
2024 VJIMC, 3
Let $a_1>0$ and for $n \ge 1$ define
\[a_{n+1}=a_n+\frac{1}{a_1+a_2+\dots+a_n}.\]
Prove that
\[\lim_{n \to \infty} \frac{a_n^2}{\ln n}=2.\]
2014 District Olympiad, 2
Let $f:[0,1]\rightarrow{\mathbb{R}}$ be a differentiable function, with continuous derivative, and let
\[ s_{n}=\sum_{k=1}^{n}f\left( \frac{k}{n}\right) \]
Prove that the sequence $(s_{n+1}-s_{n})_{n\in{\mathbb{N}}^{\ast}}$ converges to $\int_{0}^{1}f(x)\mathrm{d}x$.
2009 Miklós Schweitzer, 9
Let $ P\subseteq \mathbb{R}^m$ be a non-empty compact convex set and $ f: P\rightarrow \mathbb{R}_{ \plus{} }$ be a concave function. Prove, that for every $ \xi\in \mathbb{R}^m$
\[ \int_{P}\langle \xi,x \rangle f(x)dx\leq \left[\frac {m \plus{} 1}{m \plus{} 2}\sup_{x\in P}{\langle\xi,x\rangle} \plus{} \frac {1}{m \plus{} 2}\inf_{x\in P}{\langle\xi,x\rangle}\right] \cdot\int_{P}f(x)dx.\]