This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1342

Estonia Open Junior - geometry, 1995.2.1

A rectangle, whose one sidelength is twice the other side, is inscribed inside a triangles with sides $3$ cm, $4$ cm and $5$ cm, such that the long sides lies entirely on the long side of the triangle. The other two remaining vertices of the rectangle lie respectively on the other two sides of the triangle. Find the lengths of the sides of this rectangle.

2019 Yasinsky Geometry Olympiad, p2

The base of the quadrilateral pyramid $SABCD$ lies the $ABCD$ rectangle with the sides $AB = 1$ and $AD = 10$. The edge $SA$ of the pyramid is perpendicular to the base, $SA = 4$. On the edge of $AD$, find a point $M$ such that the perimeter of the triangle of $SMC$ was minimal.

2017 NZMOC Camp Selection Problems, 5

Find all pairs $(m, n)$ of positive integers such that the $m \times n$ grid contains exactly $225$ rectangles whose side lengths are odd and whose edges lie on the lines of the grid.

2022 Novosibirsk Oral Olympiad in Geometry, 4

Fold the next seven corners into a rectangle. [img]https://cdn.artofproblemsolving.com/attachments/b/b/2b8b9d6d4b72024996a66d41f865afb91bb9b7.png[/img]

2004 Baltic Way, 17

Consider a rectangle with sidelengths 3 and 4, pick an arbitrary inner point on each side of this rectangle. Let $x, y, z$ and $u$ denote the side lengths of the quadrilateral spanned by these four points. Prove that $25 \leq x^2+y^2+z^2+u^2 \leq 50$.

2015 Iran Geometry Olympiad, 4

In rectangle $ABCD$, the points $M,N,P, Q$ lie on $AB$, $BC$, $CD$, $DA$ respectively such that the area of triangles $AQM$, $BMN$, $CNP$, $DPQ$ are equal. Prove that the quadrilateral $MNPQ$ is parallelogram. by Mahdi Etesami Fard

2011 Sharygin Geometry Olympiad, 1

Does a convex heptagon exist which can be divided into 2011 equal triangles?

2021 Novosibirsk Oral Olympiad in Geometry, 7

Two congruent rectangles are located as shown in the figure. Find the area of the shaded part. [img]https://cdn.artofproblemsolving.com/attachments/2/e/10b164535ab5b3a3b98ce1a0b84892cd11d76f.png[/img]

1965 AMC 12/AHSME, 35

The length of a rectangle is $ 5$ inches and its width is less than $ 4$ inches. The rectangle is folded so that two diagonally opposite vertices coincide. If the length of the crease is $ \sqrt {6}$, then the width is: $ \textbf{(A)}\ \sqrt {2} \qquad \textbf{(B)}\ \sqrt {3} \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ \sqrt {5} \qquad \textbf{(E)}\ \sqrt {\frac {11}{2}}$

1993 Greece National Olympiad, 14

A rectangle that is inscribed in a larger rectangle (with one vertex on each side) is called [i]unstuck[/i] if it is possible to rotate (however slightly) the smaller rectangle about its center within the confines of the larger. Of all the rectangles that can be inscribed unstuck in a 6 by 8 rectangle, the smallest perimeter has the form $\sqrt{N}$, for a positive integer $N$. Find $N$.

Novosibirsk Oral Geo Oly IX, 2021.6

Two congruent rectangles are located as shown in the figure. Find the area of the shaded part. [img]https://cdn.artofproblemsolving.com/attachments/2/e/10b164535ab5b3a3b98ce1a0b84892cd11d76f.png[/img]

1994 Argentina National Olympiad, 4

Tags: rectangle , area , geometry
A rectangle is divided into $9$ small rectangles if by parallel lines to its sides, as shown in the figure. [img]https://cdn.artofproblemsolving.com/attachments/e/d/1fd545862a3c7950249ec54a631c74e59fb9ed.png[/img] The four numbers written indicate the areas of the four corresponding rectangles. Prove that the total area of the rectangle is greater than or equal to $90$.

2023 AMC 12/AHSME, 4

Jackson's paintbrush makes a narrow strip that is $6.5$ mm wide. Jackson has enough paint to make a strip of 25 meters. How much can he paint, in $\text{cm}^2$? $\textbf{(A) }162{,}500\qquad\textbf{(B) }162.5\qquad\textbf{(C) }1{,}625\qquad\textbf{(D) }1{,}625{,}000\qquad\textbf{(E) }16{,}250$

2023 AMC 10, 4

Jackson's paintbrush makes a narrow strip that is $6.5$ mm wide. Jackson has enough paint to make a strip of 25 meters. How much can he paint, in $\text{cm}^2$? $\textbf{(A) }162{,}500\qquad\textbf{(B) }162.5\qquad\textbf{(C) }1{,}625\qquad\textbf{(D) }1{,}625{,}000\qquad\textbf{(E) }16{,}250$

1997 Estonia National Olympiad, 5

Find the length of the longer side of the rectangle on the picture, if the shorter side has length $1$ and the circles touch each other and the sides of the rectangle as shown. [img]https://cdn.artofproblemsolving.com/attachments/b/8/3986683247293bd089d8e83911309308ce0c3a.png[/img]

2017 India PRMO, 13

In a rectangle $ABCD, E$ is the midpoint of $AB, F$ is a point on $AC$ such that $BF$ is perpendicular to $AC$, and $FE$ perpendicular to $BD$. Suppose $BC = 8\sqrt3$. Find $AB$.

1989 Bundeswettbewerb Mathematik, 3

Over each side of a cyclic quadrilateral erect a rectangle whose height is equal to the length of the opposite side. Prove that the centers of these rectangles form another rectangle.

2003 Dutch Mathematical Olympiad, 4

In a circle with center $M$, two chords $AC$ and $BD$ intersect perpendicularly. The circle of diameter $AM$ intersects the circle of diameter $BM$ besides $M$ also in point $P$. The circle of diameter $BM$ intersects the circle with diameter $CM$ besides $M$ also in point $Q$. The circle of diameter $CM$ intersects the circle of diameter $DM$ besides $M$ also in point $R$. The circle of diameter $DM$ intersects the circle of diameter $AM$ besides $M$ also in point $S$. Prove that quadrilateral $PQRS$ is a rectangle. [asy] unitsize (3 cm); pair A, B, C, D, M, P, Q, R, S; M = (0,0); A = dir(170); C = dir(10); B = dir(120); D = dir(240); draw(Circle(M,1)); draw(A--C); draw(B--D); draw(Circle(A/2,1/2)); draw(Circle(B/2,1/2)); draw(Circle(C/2,1/2)); draw(Circle(D/2,1/2)); P = (A + B)/2; Q = (B + C)/2; R = (C + D)/2; S = (D + A)/2; dot("$A$", A, A); dot("$B$", B, B); dot("$C$", C, C); dot("$D$", D, D); dot("$M$", M, E); dot("$P$", P, SE); dot("$Q$", Q, SE); dot("$R$", R, NE); dot("$S$", S, NE); [/asy]

Novosibirsk Oral Geo Oly IX, 2020.1

Two semicircles touch the side of the rectangle, each other and the segment drawn in it as in the figure. What part of the whole rectangle is filled? [img]https://cdn.artofproblemsolving.com/attachments/3/e/70ca8b80240a282553294a58cb3ed807d016be.png[/img]

2018 Sharygin Geometry Olympiad, 2

A rectangle $ABCD$ and its circumcircle are given. Let $E$ be an arbitrary point on the minor arc $BC$. The tangent to the circle at $B$ meets $CE$ at point $G$. The segments $AE$ and $BD$ meet at point $K$. Prove that $GK$ and $AD$ are perpendicular.

2012 Purple Comet Problems, 2

The diagram below shows rectangle $ABDE$ where $C$ is the midpoint of side $\overline{BD}$, and $F$ is the midpoint of side $\overline{AE}$. If $AB=10$ and $BD=24$, find the area of the shaded region. [asy] size(300); defaultpen(linewidth(0.8)); pair A = (0,10),B=origin,C=(12,0),D=(24,0),E=(24,10),F=(12,10),G=extension(C,E,D,F); filldraw(A--C--G--F--cycle,gray(0.7)); draw(A--B--D--E--F^^E--G--D); label("$A$",A,NW); label("$B$",B,SW); label("$C$",C,S); label("$D$",D,SE); label("$E$",E,NE); label("$F$",F,N); [/asy]

2004 Purple Comet Problems, 13

A cubic block with dimensions $n$ by $n$ by $n$ is made up of a collection of $1$ by $1$ by $1$ unit cubes. What is the smallest value of $n$ so that if the outer two layers of unit cubes are removed from the block, more than half the original unit cubes will still remain?

1959 AMC 12/AHSME, 3

If the diagonals of a quadrilateral are perpendicular to each other, the figure would always be included under the general classification: $ \textbf{(A)}\ \text{rhombus} \qquad\textbf{(B)}\ \text{rectangles} \qquad\textbf{(C)}\ \text{square} \qquad\textbf{(D)}\ \text{isosceles trapezoid}\qquad\textbf{(E)}\ \text{none of these} $

2006 AMC 10, 5

A 2 x 3 rectangle and a 3 x 4 rectangle are contained within a square without overlapping at any interior point, and the sides of the square are parallel to the sides of the two given rectangles. What is the smallest possible area of the square? $ \textbf{(A) } 16 \qquad \textbf{(B) } 25 \qquad \textbf{(C) } 36 \qquad \textbf{(D) } 49 \qquad \textbf{(E) } 64$

2012 Romanian Master of Mathematics, 5

Given a positive integer $n\ge 3$, colour each cell of an $n\times n$ square array with one of $\lfloor (n+2)^2/3\rfloor$ colours, each colour being used at least once. Prove that there is some $1\times 3$ or $3\times 1$ rectangular subarray whose three cells are coloured with three different colours. [i](Russia) Ilya Bogdanov, Grigory Chelnokov, Dmitry Khramtsov[/i]