Found problems: 1342
2018 Thailand TST, 1
A rectangle $\mathcal{R}$ with odd integer side lengths is divided into small rectangles with integer side lengths. Prove that there is at least one among the small rectangles whose distances from the four sides of $\mathcal{R}$ are either all odd or all even.
[i]Proposed by Jeck Lim, Singapore[/i]
1995 Tournament Of Towns, (479) 3
A rectangle with sides of lengths $a$ and $b$ ($a > b$) is cut into rightangled triangles so that any two of these triangles either have a common side, a common vertex or no common points. Moreover, any common side of two triangles is a leg of one of them and the hypotenuse of the other. Prove that $a > 2b$.
(A Shapovalov)
1998 AMC 12/AHSME, 26
In quadrilateral $ ABCD$, it is given that $ \angle A \equal{} 120^\circ$, angles $ B$ and $ D$ are right angles, $ AB \equal{} 13$, and $ AD \equal{} 46$. Then $ AC \equal{}$
$ \textbf{(A)}\ 60 \qquad \textbf{(B)}\ 62 \qquad \textbf{(C)}\ 64 \qquad \textbf{(D)}\ 65 \qquad \textbf{(E)}\ 72$
Estonia Open Senior - geometry, 1998.1.2
Prove that the parallelogram $ABCD$ with relation $\angle ABD + \angle DAC = 90^o$, is either a rectangle or a rhombus.
2001 Bulgaria National Olympiad, 1
Let $n \geq 2$ be a given integer. At any point $(i, j)$ with $i, j \in\mathbb{ Z}$ we write the remainder of $i+j$ modulo $n$. Find all pairs $(a, b)$ of positive integers such that the rectangle with vertices $(0, 0)$, $(a, 0)$, $(a, b)$, $(0, b)$ has the following properties:
[b](i)[/b] the remainders $0, 1, \ldots , n-1$ written at its interior points appear the same number of times;
[b](ii)[/b] the remainders $0, 1, \ldots , n -1$ written at its boundary points appear the same number of times.
2011 Korea - Final Round, 3
There is a chessboard with $m$ columns and $n$ rows. In each blanks, an integer is given. If a rectangle $R$ (in this chessboard) has an integer $h$ satisfying the following two conditions, we call $R$ as a 'shelf'.
(i) All integers contained in $R$ are bigger than $h$.
(ii) All integers in blanks, which are not contained in $R$ but meet with $R$ at a vertex or a side, are not bigger than $h$.
Assume that all integers are given to make shelves as much as possible. Find the number of shelves.
2016 AMC 10, 19
In rectangle $ABCD$, $AB=6$ and $BC=3$. Point $E$ between $B$ and $C$, and point $F$ between $E$ and $C$ are such that $BE=EF=FC$. Segments $\overline{AE}$ and $\overline{AF}$ intersect $\overline{BD}$ at $P$ and $Q$, respectively. The ratio $BP:PQ:QD$ can be written as $r:s:t$, where the greatest common factor of $r,s$ and $t$ is $1$. What is $r+s+t$?
$\textbf{(A) } 7
\qquad \textbf{(B) } 9
\qquad \textbf{(C) } 12
\qquad \textbf{(D) } 15
\qquad \textbf{(E) } 20$
1986 Federal Competition For Advanced Students, P2, 2
For $ s,t \in \mathbb{N}$, consider the set $ M\equal{}\{ (x,y) \in \mathbb{N} ^2 | 1 \le x \le s, 1 \le y \le t \}$. Find the number of rhombi with the vertices in $ M$ and the diagonals parallel to the coordinate axes.
2006 AIME Problems, 7
An angle is drawn on a set of equally spaced parallel lines as shown. The ratio of the area of shaded region $\mathcal{C}$ to the area of shaded region $\mathcal{B}$ is $11/5$. Find the ratio of shaded region $\mathcal{D}$ to the area of shaded region $\mathcal{A}$.
[asy]
defaultpen(linewidth(0.7)+fontsize(10));
for(int i=0; i<4; i=i+1) {
fill((2*i,0)--(2*i+1,0)--(2*i+1,6)--(2*i,6)--cycle, mediumgray);
}
pair A=(1/3,4), B=A+7.5*dir(-17), C=A+7*dir(10);
draw(B--A--C);
fill((7.3,0)--(7.8,0)--(7.8,6)--(7.3,6)--cycle, white);
clip(B--A--C--cycle);
for(int i=0; i<9; i=i+1) {
draw((i,1)--(i,6));
}
label("$\mathcal{A}$", A+0.2*dir(-17), S);
label("$\mathcal{B}$", A+2.3*dir(-17), S);
label("$\mathcal{C}$", A+4.4*dir(-17), S);
label("$\mathcal{D}$", A+6.5*dir(-17), S);[/asy]
2008 AMC 8, 17
Ms.Osborne asks each student in her class to draw a rectangle with integer side lengths and a perimeter of $50$ units. All of her students calculate the area of the rectangle they draw. What is the difference between the largest and smallest possible areas of the rectangles?
$\textbf{(A)}\ 76\qquad
\textbf{(B)}\ 120\qquad
\textbf{(C)}\ 128\qquad
\textbf{(D)}\ 132\qquad
\textbf{(E)}\ 136$
2020 Novosibirsk Oral Olympiad in Geometry, 1
Two semicircles touch the side of the rectangle, each other and the segment drawn in it as in the figure. What part of the whole rectangle is filled?
[img]https://cdn.artofproblemsolving.com/attachments/3/e/70ca8b80240a282553294a58cb3ed807d016be.png[/img]
1972 IMO Longlists, 38
Congruent rectangles with sides $m(cm)$ and $n(cm)$ are given ($m, n$ positive integers). Characterize the rectangles that can be constructed from these rectangles (in the fashion of a jigsaw puzzle). (The number of rectangles is unbounded.)
May Olympiad L2 - geometry, 2010.2
Let $ABCD$ be a rectangle and the circle of center $D$ and radius $DA$, which cuts the extension of the side $AD$ at point $P$. Line $PC$ cuts the circle at point $Q$ and the extension of the side $AB$ at point $R$. Show that $QB = BR$.
2007 Nordic, 2
Three given rectangles cover the sides of a triangle completely and each rectangle has a side parallel to a given line. Show that the rectangles also cover the interior of the triangle.
2000 Korea - Final Round, 2
Prove that an $m \times n$ rectangle can be constructed using copies of the following shape if and only if $mn$ is a multiple of $8$ where $m>1$ and $n>1$
[asy]
draw ((0,0)--(0,1));
draw ((0,0)--(1.5,0));
draw ((0,1)--(.5,1));
draw ((.5,1)--(.5,0));
draw ((0,.5)--(1.5,.5));
draw ((1.5,.5)--(1.5,0));
draw ((1,.5)--(1,0));
[/asy]
1985 Tournament Of Towns, (088) 4
A square is divided into $5$ rectangles in such a way that its $4$ vertices belong to $4$ of the rectangles , whose areas are equal , and the fifth rectangle has no points in common with the side of the square (see diagram) . Prove that the fifth rectangle is a square.
[img]https://3.bp.blogspot.com/-TQc1v_NODek/XWHHgmONboI/AAAAAAAAKi4/XES55OJS5jY9QpNmoURp4y80EkanNzmMwCK4BGAYYCw/s1600/TOT%2B1985%2BSpring%2BJ4.png[/img]
1995 Tournament Of Towns, (465) 3
A paper rectangle $ABCD $ of area $1$ is folded along a straight line so that $C$ coincides with $A$. Prove that the area of the pentagon thus obtained is less than $3/4$.
2023 Euler Olympiad, Round 1, 1
Consider a rectangle $ABCD$ with $BC = 2 \cdot AB$. Let $\omega$ be the circle that touches the sides $AB$, $BC$, and $AD$. A tangent drawn from point $C$ to the circle $\omega$ intersects the segment $AD$ at point $K$. Determine the ratio $\frac{AK}{KD}$.
[i]Proposed by Giorgi Arabidze, Georgia[/i]
1992 China Team Selection Test, 2
A $(3n + 1) \times (3n + 1)$ table $(n \in \mathbb{N})$ is given. Prove that deleting any one of its squares yields a shape cuttable into pieces of the following form and its rotations: ''L" shape formed by cutting one square from a $2 \times 2$ squares.
2005 Baltic Way, 13
What the smallest number of circles of radius $\sqrt{2}$ that are needed to cover a rectangle
$(a)$ of size $6\times 3$?
$(b)$ of size $5\times 3$?
2023 CCA Math Bonanza, L2.1
A rectangle has been divided into 8 smaller rectangles as shown below. Given the area of seven of these rectangles, find the area of the shaded rectangle.
[i]Lightning 2.1[/i]
2010 Federal Competition For Advanced Students, P2, 5
Two decompositions of a square into three rectangles are called substantially different, if reordering the rectangles does not change one into the other.
How many substantially different decompositions of a $2010 \times 2010$ square in three rectangles with integer side lengths are there such that the area of one rectangle is equal to the arithmetic mean of the areas of the other rectangles?
2005 Baltic Way, 15
Let the lines $e$ and $f$ be perpendicular and intersect each other at $H$. Let $A$ and $B$ lie on $e$ and $C$ and $D$ lie on $f$, such that all five points $A,B,C,D$ and $H$ are distinct. Let the lines $b$ and $d$ pass through $B$ and $D$ respectively, perpendicularly to $AC$; let the lines $a$ and $c$ pass through $A$ and $C$ respectively, perpendicularly to $BD$. Let $a$ and $b$ intersect at $X$ and $c$ and $d$ intersect at $Y$. Prove that $XY$ passes through $H$.
2014 AMC 10, 16
In rectangle $ABCD$, $AB=1$, $BC=2$, and points $E$, $F$, and $G$ are midpoints of $\overline{BC}$, $\overline{CD}$, and $\overline{AD}$, respectively. Point $H$ is the midpoint of $\overline{GE}$. What is the area of the shaded region?
[asy]
import graph;
size(9cm);
pen dps = fontsize(10); defaultpen(dps);
pair D = (0,0);
pair F = (1/2,0);
pair C = (1,0);
pair G = (0,1);
pair E = (1,1);
pair A = (0,2);
pair B = (1,2);
pair H = (1/2,1);
// do not look
pair X = (1/3,2/3);
pair Y = (2/3,2/3);
draw(A--B--C--D--cycle);
draw(G--E);
draw(A--F--B);
draw(D--H--C);
filldraw(H--X--F--Y--cycle,grey);
label("$A$",A,NW);
label("$B$",B,NE);
label("$C$",C,SE);
label("$D$",D,SW);
label("$E$",E,E);
label("$F$",F,S);
label("$G$",G,W);
label("$H$",H,N);
label("$\displaystyle\frac12$",(0.25,0),S);
label("$\displaystyle\frac12$",(0.75,0),S);
label("$1$",(1,0.5),E);
label("$1$",(1,1.5),E);
[/asy]
$ \textbf{(A)}\ \dfrac1{12}\qquad\textbf{(B)}\ \dfrac{\sqrt3}{18}\qquad\textbf{(C)}\ \dfrac{\sqrt2}{12}\qquad\textbf{(D)}\ \dfrac{\sqrt3}{12}\qquad\textbf{(E)}\ \dfrac16 $
1994 Dutch Mathematical Olympiad, 1
A unit square is divided into two rectangles in such a way that the smaller rectangle can be put on the greater rectangle with every vertex of the smaller on exactly one of the edges of the greater. Calculate the dimensions of the smaller rectangle.