This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1342

2011 AMC 10, 16

A dart board is a regular octagon divided into regions as shown. Suppose that a dart thrown at the board is equally likely to land anywhere on the board. What is probability that the dart lands within the center square? [asy] unitsize(10mm); defaultpen(linewidth(.8pt)+fontsize(10pt)); dotfactor=4; pair A=(0,1), B=(1,0), C=(1+sqrt(2),0), D=(2+sqrt(2),1), E=(2+sqrt(2),1+sqrt(2)), F=(1+sqrt(2),2+sqrt(2)), G=(1,2+sqrt(2)), H=(0,1+sqrt(2)); draw(A--B--C--D--E--F--G--H--cycle); draw(A--D); draw(B--G); draw(C--F); draw(E--H); [/asy] $ \textbf{(A)}\ \frac{\sqrt{2} - 1}{2} \qquad\textbf{(B)}\ \frac{1}{4} \qquad\textbf{(C)}\ \frac{2 - \sqrt{2}}{2} \qquad\textbf{(D)}\ \frac{\sqrt{2}}{4} \qquad\textbf{(E)}\ 2 - \sqrt{2}$

2014 AMC 8, 6

Six rectangles each with a common base width of $2$ have lengths of $1, 4, 9, 16, 25,$ and $36$. What is the sum of the areas of the six rectangles? $\textbf{(A) }91\qquad\textbf{(B) }93\qquad\textbf{(C) }162\qquad\textbf{(D) }182\qquad \textbf{(E) }202$

1992 China Team Selection Test, 2

A $(3n + 1) \times (3n + 1)$ table $(n \in \mathbb{N})$ is given. Prove that deleting any one of its squares yields a shape cuttable into pieces of the following form and its rotations: ''L" shape formed by cutting one square from a $2 \times 2$ squares.

2012 AMC 10, 19

In rectangle $ABCD$, $AB=6$, $AD=30$, and $G$ is the midpoint of $\overline{AD}$. Segment $AB$ is extended $2$ units beyond $B$ to point $E$, and $F$ is the intersection of $\overline{ED}$ and $\overline{BC}$. What is the area of $BFDG$? $ \textbf{(A)}\ \frac{133}{2}\qquad\textbf{(B)}\ 67\qquad\textbf{(C)}\ \frac{135}{2}\qquad\textbf{(D)}\ 68\qquad\textbf{(E)}\ \frac{137}{2}$

2014 South East Mathematical Olympiad, 8

Define a figure which is constructed by unit squares "cross star" if it satisfies the following conditions: $(1)$Square bar $AB$ is bisected by square bar $CD$ $(2)$At least one square of $AB$ lay on both sides of $CD$ $(3)$At least one square of $CD$ lay on both sides of $AB$ There is a rectangular grid sheet composed of $38\times 53=2014$ squares,find the number of such cross star in this rectangle sheet

2014 Sharygin Geometry Olympiad, 8

Let $ABCD$ be a rectangle. Two perpendicular lines pass through point $B$. One of them meets segment $AD$ at point $K$, and the second one meets the extension of side $CD$ at point $L$. Let $F$ be the common point of $KL$ and $AC$. Prove that $BF\perp KL$.

1997 Estonia National Olympiad, 5

Six small circles of radius $1$ are drawn so that they are all tangent to a larger circle, and two of them are tangent to sides $BC$ and $AD$ of a rectangle $ABCD$ at their midpoints $K$ and $L$. Each of the remaining four small circles is tangent to two sides of the rectangle. The large circle is tangent to sides $AB$ and $CD$ of the rectangle and cuts the other two sides. Find the radius of the large circle. [img]https://cdn.artofproblemsolving.com/attachments/b/4/a134da78d709fe7162c48d6b5c40bd1016c355.png[/img]

2003 Baltic Way, 13

In a rectangle $ABCD$ be a rectangle and $BC = 2AB$, let $E$ be the midpoint of $BC$ and $P$ an arbitrary inner point of $AD$. Let $F$ and $G$ be the feet of perpendiculars drawn correspondingly from $A$ to $BP$ and from $D$ to $CP$. Prove that the points $E,F,P,G$ are concyclic.

2023 Oral Moscow Geometry Olympiad, 2

There is a square sheet of paper. How to get a rectangular sheet of paper with an aspect ratio equal to $\sqrt2$? (There are no tools, the sheet can only be bent.)

2016 Latvia Baltic Way TST, 11

Is it possible to cut a square with side $\sqrt{2015}$ into no more than five pieces so that these pieces can be rearranged into a rectangle with sides of integer length? (The cuts should be made using straight lines, and flipping of the pieces is disallowed.)

2005 AMC 12/AHSME, 3

A rectangle with a diagonal of length $ x$ is twice as long as it is wide. What is the area of the rectangle? $ \textbf{(A)}\ \frac14x^2 \qquad \textbf{(B)}\ \frac25x^2 \qquad \textbf{(C)}\ \frac12x^2 \qquad \textbf{(D)}\ x^2 \qquad \textbf{(E)}\ \frac32x^2$

2016 CCA Math Bonanza, I2

Rectangle $ABCD$ has perimeter $178$ and area $1848$. What is the length of the diagonal of the rectangle? [i]2016 CCA Math Bonanza Individual Round #2[/i]

2008 German National Olympiad, 2

The triangle $ \triangle SFA$ has a right angle at $ F$. The points $ P$ and $ Q$ lie on the line $ SF$ such that the point $ P$ lies between $ S$ and $ F$ and the point $ F$ is the midpoint of the segment $ [PQ]$. The circle $ k_1$ is th incircle of the triangle $ \triangle SPA$. The circle $ k_2$ lies outside the triangle $ \triangle SQA$ and touches the segment $ [QA]$ and the lines $ SQ$ and $ SA$. Prove that the sum of the radii of the circles $ k_1$ and $ k_2$ equals the length of $ [FA]$.

1966 Miklós Schweitzer, 5

A "letter $ T$" erected at point $ A$ of the $ x$-axis in the $ xy$-plane is the union of a segment $ AB$ in the upper half-plane perpendicular to the $ x$-axis and a segment $ CD$ containing $ B$ in its interior and parallel to the $ x$-axis. Show that it is impossible to erect a letter $ T$ at every point of the $ x$-axis so that the union of those erected at rational points is disjoint from the union of those erected at irrational points. [i]A.Csaszar[/i]

2014 Postal Coaching, 2

Let $O$ be the centre of the square $ABCD$. Let $P,Q,R$ be respectively on the segments $OA,OB,OC$ such that $OP=3,OQ=5,OR=4$. Suppose $S$ is on $OD$ such that $X=AB\cap PQ,Y=BC\cap QR$ and $Z=CD\cap RS$ are collinear. Find $OS$.

1984 Tournament Of Towns, (063) O4

Prove that, for any natural number $n$, the graph of any increasing function $f : [0,1] \to [0, 1]$ can be covered by $n$ rectangles each of area whose sides are parallel to the coordinate axes. Assume that a rectangle includes both its interior and boundary points. (a) Assume that $f(x)$ is continuous on $[0,1]$. (b) Do not assume that $f(x)$ is continuous on $[0,1]$. (A Andjans, Riga) PS. (a) for O Level, (b) for A Level

2007 AIME Problems, 5

The graph of the equation $9x+223y=2007$ is drawn on graph paper with each square representing one unit in each direction. How many of the $1$ by $1$ graph paper squares have interiors lying entirely below the graph and entirely in the first quadrant?

2011 China Girls Math Olympiad, 2

The diagonals $AC,BD$ of the quadrilateral $ABCD$ intersect at $E$. Let $M,N$ be the midpoints of $AB,CD$ respectively. Let the perpendicular bisectors of the segments $AB,CD$ meet at $F$. Suppose that $EF$ meets $BC,AD$ at $P,Q$ respectively. If $MF\cdot CD=NF\cdot AB$ and $DQ\cdot BP=AQ\cdot CP$, prove that $PQ\perp BC$.

2005 AMC 10, 23

In trapezoid $ ABCD$ we have $ \overline{AB}$ parallel to $ \overline{DC}$, $ E$ as the midpoint of $ \overline{BC}$, and $ F$ as the midpoint of $ \overline{DA}$. The area of $ ABEF$ is twice the area of $ FECD$. What is $ AB/DC$? $ \textbf{(A)}\ 2\qquad \textbf{(B)}\ 3\qquad \textbf{(C)}\ 5\qquad \textbf{(D)}\ 6\qquad \textbf{(E)}\ 8$

2011 AMC 10, 9

A rectangular region is bounded by the graphs of the equations $y=a, y=-b, x=-c,$ and $x=d$, where $a,b,c,$ and $d$ are all positive numbers. Which of the following represents the area of this region? $ \textbf{(A)}\ ac+ad+bc+bd\qquad\textbf{(B)}\ ac-ad+bc-bd\qquad\textbf{(C)}\ ac+ad-bc-bd \quad\quad\qquad\textbf{(D)}\ -ac-ad+bc+bd\qquad\textbf{(E)}\ ac-ad-bc+bd $

1997 IMO, 1

In the plane the points with integer coordinates are the vertices of unit squares. The squares are coloured alternately black and white (as on a chessboard). For any pair of positive integers $ m$ and $ n$, consider a right-angled triangle whose vertices have integer coordinates and whose legs, of lengths $ m$ and $ n$, lie along edges of the squares. Let $ S_1$ be the total area of the black part of the triangle and $ S_2$ be the total area of the white part. Let $ f(m,n) \equal{} | S_1 \minus{} S_2 |$. a) Calculate $ f(m,n)$ for all positive integers $ m$ and $ n$ which are either both even or both odd. b) Prove that $ f(m,n) \leq \frac 12 \max \{m,n \}$ for all $ m$ and $ n$. c) Show that there is no constant $ C\in\mathbb{R}$ such that $ f(m,n) < C$ for all $ m$ and $ n$.

2003 Iran MO (2nd round), 3

We have a chessboard and we call a $1\times1$ square a room. A robot is standing on one arbitrary vertex of the rooms. The robot starts to move and in every one movement, he moves one side of a room. This robot has $2$ memories $A,B$. At first, the values of $A,B$ are $0$. In each movement, if he goes up, $1$ unit is added to $A$, and if he goes down, $1$ unit is waned from $A$, and if he goes right, the value of $A$ is added to $B$, and if he goes left, the value of $A$ is waned from $B$. Suppose that the robot has traversed a traverse (!) which hasn’t intersected itself and finally, he has come back to its initial vertex. If $v(B)$ is the value of $B$ in the last of the traverse, prove that in this traverse, the interior surface of the shape that the robot has moved on its circumference is equal to $|v(B)|$.

2010 Contests, 4

A $9\times 7$ rectangle is tiled with tiles of the two types: L-shaped tiles composed by three unit squares (can be rotated repeatedly with $90^\circ$) and square tiles composed by four unit squares. Let $n\ge 0$ be the number of the $2 \times 2 $ tiles which can be used in such a tiling. Find all the values of $n$.

2007 Putnam, 2

Find the least possible area of a convex set in the plane that intersects both branches of the hyperbola $ xy\equal{}1$ and both branches of the hyperbola $ xy\equal{}\minus{}1.$ (A set $ S$ in the plane is called [i]convex[/i] if for any two points in $ S$ the line segment connecting them is contained in $ S.$)

2004 Denmark MO - Mohr Contest, 1

The width of rectangle $ABCD$ is twice its height, and the height of rectangle $EFCG$ is twice its width. The point $E$ lies on the diagonal $BD$. Which fraction of the area of the big rectangle is that of the small one? [img]https://1.bp.blogspot.com/-aeqefhbBh5E/XzcBjhgg7sI/AAAAAAAAMXM/B0qSgWDBuqc3ysd-mOitP1LarOtBdJJ3gCLcBGAsYHQ/s0/2004%2BMohr%2Bp1.png[/img]