This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1342

Kyiv City MO 1984-93 - geometry, 1986.8.2

A rectangle is said to be inscribed in a parallelogram if its vertices lie one on each side of the parallelogram. On the larger side $AB$ of the parallelogram $ABCD$, find all those points $K$ that are the vertices of the rectangles inscribed in $ABCD$.

2008 Germany Team Selection Test, 3

A rectangle $ D$ is partitioned in several ($ \ge2$) rectangles with sides parallel to those of $ D$. Given that any line parallel to one of the sides of $ D$, and having common points with the interior of $ D$, also has common interior points with the interior of at least one rectangle of the partition; prove that there is at least one rectangle of the partition having no common points with $ D$'s boundary. [i]Author: Kei Irie, Japan[/i]

2013 Purple Comet Problems, 2

The following diagram shows an eight-sided polygon $ABCDEFGH$ with side lengths $8,15,8,8,8,6,8,$ and $29$ as shown. All of its angles are right angles. Turn this eight-sided polygon into a six-sided polygon by connecting $B$ to $D$ with an edge and $E$ to $G$ with an edge to form polygon $ABDEGH$. Find the perimeter of $ABDEGH$. [asy] size(200); defaultpen(linewidth(2)); pen qq=font("phvb"); pair rectangle[] = {origin,(0,-8),(15,-8),(15,-16),(23,-16),(23,-8),(29,-8),(29,0)}; string point[] = {"A","B","C","D","E","F","G","H"}; int dirlbl[] = {135,225,225,225,315,315,315,45}; string value[] = {"8","15","8","8","8","6","8","29"}; int direction[] = {0,90,0,90,180,90,180,270}; for(int i=0;i<=7;i=i+1) { draw(rectangle[i]--rectangle[(i+1) % 8]); label(point[i],rectangle[i],dir(dirlbl[i]),qq); label(value[i],(rectangle[i]+rectangle[(i+1) % 8])/2,dir(direction[i]),qq); } [/asy]

2022 New Zealand MO, 1

$ABCD$ is a rectangle with side lengths $AB = CD = 1$ and $BC = DA = 2$. Let $ M$ be the midpoint of $AD$. Point $P$ lies on the opposite side of line $MB$ to $A$, such that triangle $MBP$ is equilateral. Find the value of $\angle PCB$.

1995 Italy TST, 2

Twenty-one rectangles of size $3\times 1$ are placed on an $8\times 8$ chessboard, leaving only one free unit square. What position can the free square lie at?

2013 Balkan MO Shortlist, C2

Some squares of an $n \times n$ chessboard have been marked ($n \in N^*$). Prove that if the number of marked squares is at least $n\left(\sqrt{n} + \frac12\right)$, then there exists a rectangle whose vertices are centers of marked squares.

1993 AMC 8, 21

If the length of a rectangle is increased by $20\% $ and its width is increased by $50\% $, then the area is increased by $\text{(A)}\ 10\% \qquad \text{(B)}\ 30\% \qquad \text{(C)}\ 70\% \qquad \text{(D)}\ 80\% \qquad \text{(E)}\ 100\% $

Novosibirsk Oral Geo Oly VII, 2021.1

Cut the $9 \times 10$ grid rectangle along the grid lines into several squares so that there are exactly two of them with odd sidelengths.

2004 Iran MO (3rd Round), 6

assume that we have a n*n table we fill it with 1,...,n such that each number exists exactly n times prove that there exist a row or column such that at least $\sqrt{n}$ diffrent number are contained.

2008 China Team Selection Test, 1

Given a rectangle $ ABCD,$ let $ AB \equal{} b, AD \equal{} a ( a\geq b),$ three points $ X,Y,Z$ are put inside or on the boundary of the rectangle, arbitrarily. Find the maximum of the minimum of the distances between any two points among the three points. (Denote it by $ a,b$)

2010 Romania Team Selection Test, 1

Let $P$ be a point in the plane and let $\gamma$ be a circle which does not contain $P$. Two distinct variable lines $\ell$ and $\ell'$ through $P$ meet the circle $\gamma$ at points $X$ and $Y$, and $X'$ and $Y'$, respectively. Let $M$ and $N$ be the antipodes of $P$ in the circles $PXX'$ and $PYY'$, respectively. Prove that the line $MN$ passes through a fixed point. [i]Mihai Chis[/i]

PEN F Problems, 1

Suppose that a rectangle with sides $ a$ and $ b$ is arbitrarily cut into $ n$ squares with sides $ x_{1},\ldots,x_{n}$. Show that $ \frac{x_{i}}{a}\in\mathbb{Q}$ and $ \frac{x_{i}}{b}\in\mathbb{Q}$ for all $ i\in\{1,\cdots, n\}$.

2023 AMC 10, 17

Let $ABCD$ be a rectangle with $AB = 30$ and $BC = 28$. Point $P$ and $Q$ lie on $\overline{BC}$ and $\overline{CD}$ respectively so that all sides of $\triangle{ABP}, \triangle{PCQ},$ and $\triangle{QDA}$ have integer lengths. What is the perimeter of $\triangle{APQ}$? (A) 84 (B) 86 (C) 88 (D)90 (E)92

2015 Sharygin Geometry Olympiad, 8

Does there exist a rectangle which can be divided into a regular hexagon with sidelength $1$ and several congruent right-angled triangles with legs $1$ and $\sqrt{3}$?

2008 Iran MO (3rd Round), 5

a) Suppose that $ RBR'B'$ is a convex quadrilateral such that vertices $ R$ and $ R'$ have red color and vertices $ B$ and $ B'$ have blue color. We put $ k$ arbitrary points of colors blue and red in the quadrilateral such that no four of these $ k\plus{}4$ point (except probably $ RBR'B'$) lie one a circle. Prove that exactly one of the following cases occur? 1. There is a path from $ R$ to $ R'$ such that distance of every point on this path from one of red points is less than its distance from all blue points. 2. There is a path from $ B$ to $ B'$ such that distance of every point on this path from one of blue points is less than its distance from all red points. We call these two paths the blue path and the red path respectively. Let $ n$ be a natural number. Two people play the following game. At each step one player puts a point in quadrilateral satisfying the above conditions. First player only puts red point and second player only puts blue points. Game finishes when every player has put $ n$ points on the plane. First player's goal is to make a red path from $ R$ to $ R'$ and the second player's goal is to make a blue path from $ B$ to $ B'$. b) Prove that if $ RBR'B'$ is rectangle then for each $ n$ the second player wins. c) Try to specify the winner for other quadrilaterals.

2018 Irish Math Olympiad, 4

We say that a rectangle with side lengths $a$ and $b$ [i]fits inside[/i] a rectangle with side lengths $c$ and $d$ if either ($a \le c$ and $b \le d$) or ($a \le d$ and $b \le c$). For instance, a rectangle with side lengths $1$ and $5$ [i]fits inside[/i] another rectangle with side lengths $1$ and $5$, and also [i]fits inside[/i] a rectangle with side lengths $6$ and $2$. Suppose $S$ is a set of $2019$ rectangles, all with integer side lengths between $1$ and $2018$ inclusive. Show that there are three rectangles $A$, $B$, and $C$ in $S$ such that $A$ fits inside $B$, and $B$ [i]fits inside [/i]$C$.

2003 AMC 12-AHSME, 3

Rose fills each of the rectangular regions of her rectangular flower bed with a different type of flower. The lengths, in feet, of the rectangular regions in her flower bed are as shown in the figure. She plants one flower per square foot in each region. Asters cost $ \$$1 each, begonias $ \$$1.50 each, cannas $ \$$2 each, dahlias $ \$$2.50 each, and Easter lilies $ \$$3 each. What is the least possible cost, in dollars, for her garden? [asy]unitsize(5mm); defaultpen(linewidth(.8pt)+fontsize(8pt)); draw((6,0)--(0,0)--(0,1)--(6,1)); draw((0,1)--(0,6)--(4,6)--(4,1)); draw((4,6)--(11,6)--(11,3)--(4,3)); draw((11,3)--(11,0)--(6,0)--(6,3)); label("1",(0,0.5),W); label("5",(0,3.5),W); label("3",(11,1.5),E); label("3",(11,4.5),E); label("4",(2,6),N); label("7",(7.5,6),N); label("6",(3,0),S); label("5",(8.5,0),S);[/asy]$ \textbf{(A)}\ 108 \qquad \textbf{(B)}\ 115 \qquad \textbf{(C)}\ 132 \qquad \textbf{(D)}\ 144 \qquad \textbf{(E)}\ 156$

2019 AMC 8, 2

Three identical rectangles are put together to form rectangle $ABCD$, as shown in the figure below. Given that the length of the shorter side of each of the smaller rectangles $5$ feet, what is the area in square feet of rectangle $ABCD$? [asy]draw((0,0)--(0,10)--(15,10)--(15,0)--(0,0)); draw((0,5)--(10,5)); draw((10,0)--(10,10)); label("$A$",(0,0),SW); label("$B$",(15,0),SE); label("$C$",(15,10),NE); label("$D$",(0,10),NW); dot((0,10)); dot((15,0)); dot((15,10)); dot((0,0)); [/asy] $\textbf{(A) }45\qquad \textbf{(B) }75\qquad \textbf{(C) }100\qquad \textbf{(D) }125\qquad \textbf{(E) }150\qquad$

1989 IMO Shortlist, 2

Ali Barber, the carpet merchant, has a rectangular piece of carpet whose dimensions are unknown. Unfortunately, his tape measure is broken and he has no other measuring instruments. However, he finds that if he lays it flat on the floor of either of his storerooms, then each corner of the carpet touches a different wall of that room. If the two rooms have dimensions of 38 feet by 55 feet and 50 feet by 55 feet, what are the carpet dimensions?

2018 AMC 10, 17

In rectangle $PQRS$, $PQ=8$ and $QR=6$. Points $A$ and $B$ lie on $\overline{PQ}$, points $C$ and $D$ lie on $\overline{QR}$, points $E$ and $F$ lie on $\overline{RS}$, and points $G$ and $H$ lie on $\overline{SP}$ so that $AP=BQ<4$ and the convex octagon $ABCDEFGH$ is equilateral. The length of a side of this octagon can be expressed in the form $k+m\sqrt{n}$, where $k$, $m$, and $n$ are integers and $n$ is not divisible by the square of any prime. What is $k+m+n$? $\textbf{(A) } 1 \qquad \textbf{(B) } 7 \qquad \textbf{(C) } 21 \qquad \textbf{(D) } 92 \qquad \textbf{(E) } 106$

Indonesia Regional MO OSP SMA - geometry, 2020.1

In the figure, point $P, Q,R,S$ lies on the side of the rectangle $ABCD$. [img]https://1.bp.blogspot.com/-Ff9rMibTuHA/X9PRPbGVy-I/AAAAAAAAMzA/2ytG0aqe-k0fPL3hbSp_zHrMYAfU-1Y_ACLcBGAsYHQ/s426/2020%2BIndonedia%2BMO%2BProvince%2BP2%2Bq1.png[/img] If it is known that the area of the small square is $1$ unit, determine the area of the rectangle $ABCD$.

2014 Brazil National Olympiad, 5

There is an integer in each cell of a $2m\times 2n$ table. We define the following operation: choose three cells forming an L-tromino (namely, a cell $C$ and two other cells sharing a side with $C$, one being horizontal and the other being vertical) and sum $1$ to each integer in the three chosen cells. Find a necessary and sufficient condition, in terms of $m$, $n$ and the initial numbers on the table, for which there exists a sequence of operations that makes all the numbers on the table equal.

2003 Tournament Of Towns, 5

Is it possible to tile $2003 \times 2003$ board by $1 \times 2$ dominoes placed horizontally and $1 \times 3$ rectangles placed vertically?

2017 International Zhautykov Olympiad, 3

Rectangle on a checked paper with length of a unit square side being $1$ Is divided into domino figures( two unit square sharing a common edge). Prove that you colour all corners of squares on the edge of rectangle and inside rectangle with $3$ colours such that for any two corners with distance $1$ the following conditions hold: they are coloured in different colour if the line connecting the two corners is on the border of two domino figures and coloured in same colour if the line connecting the two corners is inside a domino figure.

2018 Latvia Baltic Way TST, P6

Let $ABCD$ be a rectangle consisting of unit squares. All vertices of these unit squares inside the rectangle and on its sides have been colored in four colors. Additionally, it is known that: [list] [*] every vertex that lies on the side $AB$ has been colored in either the $1.$ or $2.$ color; [*] every vertex that lies on the side $BC$ has been colored in either the $2.$ or $3.$ color; [*] every vertex that lies on the side $CD$ has been colored in either the $3.$ or $4.$ color; [*] every vertex that lies on the side $DA$ has been colored in either the $4.$ or $1.$ color; [*] no two neighboring vertices have been colored in $1.$ and $3.$ color; [*] no two neighboring vertices have been colored in $2.$ and $4.$ color. [/list] Notice that the constraints imply that vertex $A$ has been colored in $1.$ color etc. Prove that there exists a unit square that has all vertices in different colors (in other words it has one vertex of each color).